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Figure 1. Our Multimodal Super-Resolution (MMSR) method leverages the rich context of multimodal guidance, including image captions,

depth maps, semantic segmentation maps, and edges inferred from LR. MMSR surpasses state-of-the-art methods by producing more

realistic results and suppressing artifacts that, while plausible, are inconsistent with the information present in the LR input.

Abstract

Single-image super-resolution (SISR) remains chal-

lenging due to the inherent difficulty of recovering fine-

grained details and preserving perceptual quality from

low-resolution inputs. Existing methods often rely on

limited image priors, leading to suboptimal results. We

propose a novel approach that leverages the rich con-

textual information available in multiple modalities –

including depth, segmentation, edges, and text prompts–

to learn a powerful generative prior for SISR within a

diffusion model framework. We introduce a flexible net-

work architecture that effectively fuses multimodal in-

formation, accommodating an arbitrary number of input

modalities without requiring significant modifications to

the diffusion process. Crucially, we mitigate hallucina-

tions, often introduced by text prompts, by using spatial

information from other modalities to guide regional text-

based conditioning. Each modality’s guidance strength

can also be controlled independently, allowing steering

outputs toward different directions, such as increasing

bokeh through depth or adjusting object prominence via

segmentation. Extensive experiments demonstrate that

our model surpasses state-of-the-art generative SISR

methods, achieving superior visual quality and fidelity.

1. Introduction

Single image super-resolution (SISR) aims to generate high-

resolution images from low-resolution inputs while preserv-

∗This work was done during an internship at Google.

ing semantic identity and texture details. While it is not

essential to treat SISR as a regression problem, past meth-

ods [17, 29, 37, 62] typically use a deep neural network to

learn a direct mapping from low-resolution images to high-

resolution images. Even though these regression-based meth-

ods achieve good scores on paired metrics like PSNR and

SSIM, they have failed to produce results with high quality

comparable to natural images, a task at which recent genera-

tive models have excelled [5, 12, 14]. The advent of powerful

generative models, such as autoregressive models [10, 51]

and diffusion models [47, 53, 54], has revolutionized image

generation tasks, including text-to-image synthesis. This has

inspired recent efforts to leverage these pre-trained genera-

tive models for downstream tasks like SISR [6, 41, 53]. For

instance, very recent works [50, 71] achieve super-resolution

by leveraging emerging vision-language models (e.g., Gem-

ini [56], LLaVA [36], ChatGPT-4 [1]) and pretrained text-to-

image models to first generate captions from low-resolution

images and then use these captions as prompts to generate

high-resolution images.

While providing rich textual descriptions can significantly

enhance the quality of generated images [4, 19, 34], relying

solely on text for SISR poses challenges. Recent works [7,

26, 35, 77] have shown that text prompts cannot represent

spatial relationships. This implies that textual information,

such as texture descriptions, can only be applied to the whole

image. Figure 1 provides a representative example. Previous

text-based super-resolution methods [65, 68] use a ‘lion’
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caption, which results in a furry tongue. However, while

lions have fur, their tongues do not grow hair. Can we

leverage spatial cues from depth and segmentation data to

improve the learned prior and enhance the quality of SISR?

Fortunately, we can directly extract additional modalities

from the low-resolution image by using various pretrained

cross-modal prediction models [11, 66]. In this paper, we in-

troduce a new diffusion model architecture dedicated to mul-

timodal super-resolution, which is conceptually illustrated

in Figure 2. By integrating multiple modalities into a sin-

gle diffusion model, our method overcomes the challenges

of recovering fine-grained details and preserving percep-

tual quality. Specifically, we propose conditioning diffusion

models on modalities including text captions, semantic seg-

mentation maps, depth maps, and edges to implicitly align

text captions for correctly prompting different regions.

We demonstrate the proposed multimodal diffusion model

on the SISR task. Our effective multimodal architecture

achieves better realism in SISR results than the best text-

driven method and largely eliminates hallucinations that do

not match the input. Moreover, we find that the multimodal

SISR enables a new controlling feature, where we can explic-

itly adjust the weights of each modality to steer the generated

results in different directions.

Our contributions are summarized as follows:

• We demonstrate the effectiveness of token-wise encod-

ing for seamlessly injecting multiple modalities into pre-

trained text-to-image diffusion models without architec-

tural modifications or significant model size overhead.

• We propose a novel multimodal latent connector that effi-

ciently fuses information from different modalities, main-

taining linear time complexity with respect to the number

of modalities.

• We introduce a new multimodal classifier-free guidance

technique that enhances realism at higher guidance rates

while mitigating excessive hallucinations and fake details.

• Our method enables adjustment of the influence of each

modality, allowing for fine-grained manipulation of SISR

results while preserving realism and quality.

2. Related Work

Generative Prior Powered Super-resolution. Recent ad-

vances in image restoration leverage the power of foun-

dational models to enhance the quality of degraded im-

ages [9, 13, 20, 33, 38, 39, 46, 50, 57, 64, 69, 72, 76].

This trend is fueled by the capacity of pretrained generative

models to capture natural image statistics and transfer this

knowledge to the super-resolution task, enabling photoreal-

istic image generation. Early works in this domain include

LDM-SR [53] and StableSR [59] for single image super-

resolution. Beyond this, methods like InstructPix2Pix [6]

utilize instructions for image editing, while ControlNet [74]

VLMs
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Figure 2. Language models struggle to accurately represent spa-

tial information, leading to coarse and imprecise image super-

resolution. To overcome this limitation, we incorporate additional

spatial modalities like depth maps and semantic segmentation maps.

These modalities provide detailed spatial context, allowing our

model to implicitly align language descriptions with individual pix-

els through a transformer network. This enriched understanding of

the image significantly enhances the realism of our super-resolution

results and minimizes distortion.

and IP-Adapter [70] facilitate cross-modality image transla-

tion. These approaches highlight a common observation: the

quality of results in downstream tasks is strongly correlated

with the quality of the pretrained models [40].

Recent works focus on leveraging powerful text-to-image

diffusion models, employing text prompts to fully exploit

the learned prior. PASD [68] uses image content descrip-

tions; SPIRE [49] and PromptIP [48] use degradation de-

scriptions; and SeeSR [65] employs a combination of context

and degradation descriptions. Compared to earlier methods

that directly fine-tuned diffusion models on super-resolution

data, these text-prompt-driven approaches not only achieve

superior realism but also enable multi-faceted outputs by

conditioning on different prompts [20]. This capability

enriches the typically single-output super-resolution task.

While text prompts offer advantages, they can be am-

biguous in representing spatial relationships [4, 7, 19, 34].

Our proposed MMSR framework addresses this by integrat-

ing multimodal inputs within a novel architecture. We also

demonstrate native super-resolution effects control with this

new architecture, enabling control of both overall realism

and the effect of each modality.

Vision-language Understanding and Generation. Recent

large vision-language models (e.g., Gemini [56], LLaVA

[36], GPT-4o [1]) excel in tasks like image captioning [61],

but translating visual information into diverse modalities

for image generation remains challenging. While models

like 4M [2, 43] effectively extract high-level visual informa-

tion (depth, normals, semantics, etc.), leveraging these for

generation is a promising direction. Recent exploration in-

cludes GLIGEN [30] generate images from bounding boxes,

and ControlNet [74] generate images from depth and other

modalities. More recent works [21, 22] explore using dis-

crete hidden-feature tokens to guide generation. In this paper,

we introduce a new approach for multimodal control with

discrete vision tokens, effectively integrating depth maps,
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Figure 3. This diagram illustrates our multimodal super-resolution pipeline. Starting with a low-resolution (LR) image, we extract modalities

like depth and semantic segmentation maps. These modalities are encoded into tokens and transformed into multimodal latent tokens (m).

Our diffusion model uses these tokens and the LR input to generate a high-resolution (SR) output. A multimodal classifier-free guidance

(m-cfg) refines the SR image for enhanced quality.

semantic segmentation maps, and text prompts for superior

performance. Experiments on real-world super-resolution

demonstrate the effectiveness of our approach.

3. Method

Single-image super-resolution aims to recover a high-

resolution image x from its low-resolution counterpart xLR.

This is an ill-posed problem, often leading to generative

models that produce “hallucinated” details – plausible yet

inconsistent with the input. To mitigate this, we introduce

auxiliary information, such as depth (mdep), semantic seg-

mentation (mseg), and edge maps (medg), collectively de-

noted as m. By conditioning the generative process on both

the low-resolution image and these auxiliary modalities, we

propose a new distribution p(x|xLR,m) with reduced uncer-

tainty compared to the original distribution p(x|xLR).

This reduction in uncertainty can be understood through

the lens of information theory. The auxiliary modality m

provides additional information about the high-resolution

image x that is not present in the low-resolution input xLR.

Since (conditional) mutual information is non-negative:

I(x;m|xLR) = H(p(x|xLR))−H(p(x|xLR,m)), (1)

where H(·) denotes entropy. Consequently, the entropy of

the conditional distribution with the auxiliary modality is:

H(p(x|xLR)) ≥ H(p(x|xLR,m)). (2)

The same motivation for reducing uncertainty is also shared

by recent diffusion guidance works [23, 44]. While low-

entropy sampling does not guarantee sharper images, it often

leads to outputs with better visual quality compared to stan-

dard sampling. Motivated by this observation, we introduce

a diffusion model [24] to learn the multimodal distribution

p(x|xLR,m), effectively incorporating auxiliary informa-

tion to enhance SISR quality.

Ideally, the auxiliary modalities should provide informa-

tion complementary to the low-resolution input. In practice,

the auxiliary modalities are derived from the high-resolution

image during training, ensuring informative conditioning.

While we use modalities derived from the low-resolution

input during inference, we demonstrate that this still leads to

superior performance, including higher-quality details and

improved fidelity to the input.

3.1. Unified Mutlimodal Diffusion Conditioning

We introduce a new diffusion network architecture, illus-

trated in Figure 3, for simultaneously conditioning on multi-

ple modalities. Unlike recent methods like ControlNet [74]

and IP-Adapter [70], which duplicate network components

for each modality and incur significant computational over-

head, our approach leverages a pretrained VQGAN image

tokenizer [18]. This allows us to encode diverse modalities

into a unified token representation for conditioning the diffu-

sion model, without introducing additional model parameters

or modifying the diffusion network itself. These tokens are

concatenated with the text prompt embedding and used for

cross-attention within the diffusion model. To efficiently

process this long token sequence, we introduce a lightweight

multimodal connector. This connector employs a dedicated

architecture to achieve linear complexity for cross-attention,

significantly reducing the computational burden. In what

follows we present the implementation details.

Token-wise Multimodal Encoding. While VQGAN [18]

has proven effective for cross-modal encoding in image un-

derstanding and generation [2, 3, 43], its optimal applica-

tion for image super-resolution remains an open question.

Unlike tasks focused on understanding or generation, super-

resolution requires tokenization to not only capture semantic

information but also preserve pixel-wise details crucial for
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Figure 4. Using discrete multimodal tokens leads to superior recon-

struction of modalities compared to continuous tokens.

accurate reconstruction, such as spatial relationships within

a depth map. Inspired by recent discussions on using dis-

crete or continuous tokenization for autoregressive image

generation [55], we investigate the impact of quantization

on multimodal super-resolution. Specifically, we analyze

how different quantization strategies affect the reconstruc-

tion quality of individual modalities and the final generated

image. To this end, we utilize a VQGAN model pre-trained

on a large-scale multimodal image dataset.

Figure 4 compares the reconstruction quality of multi-

modal tokens before and after quantization. As the figure

illustrates, discrete tokens (post-quantization) better preserve

individual modality information, while continuous tokens

introduce noticeable artifacts. Consequently, we employ

discrete tokens for our super-resolution experiments.

Our multimodal encoding process utilizes the encoder

and quantizer of the pre-trained VQGAN. Each 256× 256
input modality is encoded into a 16× 16 multimodal token

sequence with a feature dimension of 256. These tokens are

then quantized using a codebook of size 1024. To facilitate

concatenation with text embeddings, we pad the feature

dimension of the multimodal tokens to 1024, resulting in a

(256×3+77)×1024 multimodal token sequence condition.

Multimodal Latent Connector. While cross-attention pro-

vides a flexible mechanism for conditioning diffusion models

on multimodal data, its quadratic complexity with respect

to the number of condition tokens introduces a significant

computational burden. To address this, we introduce the

Multimodal Latent Connector (MMLC), inspired by recent

advances in efficient attention architectures [25, 28, 60].

As illustrated in Figure 3, the MMLC employs a trans-

former architecture to efficiently process the multimodal

token sequence. The transformer receives two inputs: a ran-

domly initialized sequence of learnable latent tokens, and the

multimodal input sequence. The output is a token sequence

of the same length as the latent token sequence, which serves

as conditioning for the diffusion model. Therefore, the dif-

fusion model conditions on fixed-length latent tokens (128

in our experiments), which are significantly shorter than the

original multimodal token sequence input. The MMLC dis-

tills the essential information from the longer multimodal

token sequence into the shorter multimodal latent token se-

quence through cross-attention. Following cross-attention,

several self-attention blocks further process the latent token

sequence, allowing the model to fully integrate the distilled

information.

This approach significantly reduces the computational

cost of cross-attention in the diffusion model. Standard self-

attention operates on the full multimodal token sequence

(K,V ∈ R
M×D), resulting in a time complexity of O(M2),

where M is the length of the sequence and D is the di-

mensionality of each token. In contrast, the MMLC uses a

cross-attention between the latent token sequence (of size

N ×D) and the multimodal token sequence which reduces

this to O(MN). Here N is the length of the latent sequence

and N � M . This linear complexity with respect to the

multimodal sequence length enables efficient processing of

high-dimensional multimodal data, effectively capturing es-

sential information for super-resolution.

Flexible Multimodal Input. To enhance flexibility and

robustness, we enable our method to handle scenarios where

certain input modalities are unreliable or unavailable. We

adopt a learnable embedding approach inspired by DALL-E

2 [52]. Specifically, we introduce a special learnable token,

m∅, optimized alongside the diffusion model and MMLC

to represent the absence of a modality. During training, we

independently randomly replace each modality with 256

m∅ tokens with a probability of 0.1. This encourages the

model to learn robust representations that can effectively

handle missing information. During inference, any missing

modality is represented by a sequence of 256 m∅ tokens.

This approach allows for flexible multimodal input, enabling

the model to generate high-quality images even with lim-

ited or no auxiliary modalities. As demonstrated in our ex-

periments, this strategy significantly improves performance

when dealing with input that includes fewer modalities than

were available during training.

3.2. Multimodal Guidance and Control

Building upon the success of guidance techniques [15, 23]

in improving sample quality across various image genera-

tion tasks [45, 47, 52], recent diffusion-based SISR methods

have begun incorporating prompt tuning to enhance super-

resolution results [59, 65, 71]. These methods improve the

result by using negative prompts with Classifier-free Guid-

ance (CFG) [23]. which can be expressed as:

ε̃(zt, c) = (1 + w) ε(zt, c, pos)− w ε(zt, c, neg), (3)

where ε̃(zt, c) represents the guided denoising process, ε(·)
denotes the diffusion model, zt denotes the noisy image

latent, c = {xLR, t, . . . } denotes the conditioning inputs

(including the low-resolution image xLR, timestep t, and

other parameters), w is the guidance scale, and pos and neg
are the positive and negative prompts. While increasing w
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Figure 5. MMSR super-resolution results on real-world images compared with state-of-the-art methods. Zoom in to appreciate the details.

often leads to sharper and more detailed outputs, it can also

exacerbate hallucination, resulting in details inconsistent

with the low-resolution input. Such artifacts are widely

reported but are difficult to suppress, even with recent efforts

like balancing the training data [71].

Multimodal Classifier-free Guidance. To mitigate the is-

sue of excessive hallucination often associated with high

guidance scales in CFG, we propose a novel multimodal

guidance strategy. We argue that the artifacts come from the

weak guidance in the negative prompting process. Instead

of simply relying on text prompts for guidance, we leverage

the rich information encoded in the multimodal latent tokens

to strengthen both positive and negative promptings. Specifi-

cally, we condition both the postive and negative generation

processes on the multimodal latent token sequence, denoted

as m. This leads to the following multimodal CFG:

ε̃(zt, c,m)=(1+w)ε(zt, c, pos,m)− w ε(zt, c, neg,m).
(4)

Sec. 4.1 shows that this change in negative generation helps

to achieve a better trade-off between perceptual quality and

identity preservation, better maintaining the semantic content

of the low-resolution input in the upscaled output, compared

with the standard CFG in previous text-based methods.

Scaling Single-modal Guidance. Multimodal CFG effec-

tively controls the overall influence of the prompts but does

not offer control over each modality individually. To ad-

dress this limitation, we introduce a mechanism to selec-

tively amplify or suppress the contribution of specific modal-

ities. Specifically, we modify the attention temperature δ

of MMLC during cross-conditioning, where δ scales the

attention maps before applying the softmax operation:

Attention(Q,K, V ) = softmax

(

QKT

δ

)

V. (5)

This parameter controls the sensitivity of the attention mech-

anism to differences between the feature sequence Q and the

multimodal token sequences K and V . A smaller temper-

ature δ typically leads to a stronger conditioning effect on

the attention mechanism. In the standard scaled dot-product

attention, the temperature δ is empirically set to the square

root of the key dimension
√
dk. We observe that scaling

the standard temperature
√
dk (where dk is the key dimen-

sion) within a range of [0.4, 10] can produce high-quality

results, with varying levels of fidelity to the input modalities.

By scaling the temperature during sampling, we achieve

precise control over the super-resolution process, enabling

manageable manipulation of the output with fine-grained

control.

3.3. MMSR Implementation

Figure 3 illustrates our multimodal guided super-resolution

pipeline. During inference, we first extract four modalities

from the low-resolution (LR) image: a text caption generated

by Gemini Flash [56], a depth map estimated by Depth

Anything [66], a semantic segmentation mask produced by

Mask2Former [11], and edge information extracted with a

Canny edge detector. The depth map, segmentation mask,

and edge information are encoded into token sequences using

a pretrained VQGAN, while the text caption is processed by

a pretrained CLIP encoder to obtain a text embedding.

Following a similar conditioning strategy to Instruct-

Pix2Pix [6], the LR image is concatenated with a noisy

latent vector sampled from the diffusion model, providing

additional conditioning.

4. Experiments

Training Details. Our super-resolution model is initialized

with the weights of a pretrained text-to-image model, with

the same architecture and size as Stable Diffusion v2 [53].

The super-resolution training dataset consists of randomly

degraded (using RealESRGAN degradation [63]) high-

resolution images from the combined LSDIR and DIV2K

datasets, with corresponding 512× 512 high-resolution im-

ages as ground truth. We set the batch size to 1024 and

the learning rate to 1e-4, which we empirically found maxi-

mized compute efficiency on TPUv5 pods. During testing,

all benchmarks use a model checkpoint finetuned for 160k

iterations. We use 50-step DDIM sampling, consistent with

previous methods. We use a guidance rate of 4 as the default.
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Figure 6. Super-resolution results on common benchmarks, comparing MMSR with state-of-the-art techniques. Zoom in for detail.

Evaluation Details. We use reference-based metrics like

LPIPS [75] and DISTS [16], and non-reference-based met-

rics like NIQE [42], MANIQA [67], MUSIQ [27], and

CLIPIQA [58], as these have been shown to align well

with humans’ aesthetic preferences. Our compared base-

lines include recent diffusion-based super-resolution meth-

ods [33, 53, 59, 65, 68, 72] and the representative meth-

ods [8, 31, 32, 63, 73]. We collected their results either by

running their official code or from published results. In a few

cases where the multimodal prediction failed (two flat im-

ages and one pencil drawing from DRealSR), we manually

replaced the prediction with m∅ (see supplemental material).

4.1. Quantitative Results

Table 1 shows the quantitative result comparisons of ours

with the other baselines, compared on the synthetic bench-

mark and real-world super-resolution benchmarks. Several

facts are worth noting: (1) Our method achieves the best

LPIPS, DISTS, NIQE, and FID scores on the DIV2K-Val and

RealSR dataset, significantly outperforming previous state-

of-the-art methods. This superiority demonstrates that our

method can generate more perceptually identical details from

the guidance of multimodal context. (2) Our method also

achieves the best performance in the non-reference visual

quality metrics including NIQE, MANIQA, CLIPIQA, and

MUSIQ scores. This advantage demonstrates our method

can fully utilize the photorealistic priors encapsulated in the

pretrained diffusion model. Overall, these observations fully

demonstrate our advantages in using multimodal guidance

compared with the past single-modality methods.

Effects of Multimodal CFG Guidance. Table 3 demon-

strates the effects of our proposed multimodal CFG on

the 1MP DIV2K-Val benchmark, which replaces the neg-

ative score guided by empty language token ε(zt, c, neg),
shortened as cfg, with multimodal guided negative score

(ε(zt, c,m, neg)), shortened as m-cfg. In order to ex-

clude the influence of architectural differences, we also

compare our method with the empty multimodal token

ε(zt, c,m∅, neg), shortened as m∅-cfg. Note that the pos-

itive score for all three compared methods is the same

ε(zt, c,m, pos). The results show that our method mitigates

the degradation reflected in the LPIPS and NIQE scores

when using guidance rates of 10 and 14 in both cfg and m∅-

cfg, while maintaining comparable performance. The visual

results in Table 3 further demonstrate our superiority, where

ours suppresses the color change and incorrect texture of

high CFG guidance rate, leading to higher CLIPIQA score.

Effects of Latent Connector. To demonstrate the effec-

tiveness of the proposed multimodal latent connector, we

conducted an ablation study by training a new multimodal

super-resolution model without the latent connector, which

directly uses the longer multimodal token sequence as input.

The quantitative performance is shown in Table 2. Our w.

MMLC outperforms the w/o. MMLC in all reference and

non-reference metrics. The visual results in Figure 7 show

that the model without the MMLC is more likely to exacer-

bate hallucination. Its result shows bokeh on the branches

but a clear trunk, even though the depth input clearly shows

they are at the same depth.

Contributions of Each Modality. Figure 8 shows the con-
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DIV2K-Val-3k 512 × 512

Methods PSNR SSIM LPIPS ↓ DISTS ↓ NIQE ↓ FID ↓ MUSIQ CLIPIQA

BSRGAN 21.87 0.5539 0.4136 0.2737 4.7615 64.28 59.11 0.5183

R-ESRGAN 21.94 0.5736 0.3868 0.2601 4.9209 53.46 58.64 0.5424

LDL 21.52 0.5690 0.3995 0.2688 5.0249 58.94 57.90 0.5313

DASR 21.72 0.5536 0.4266 0.2688 4.8596 67.22 54.22 0.5241

FeMASR 20.85 0.5163 0.3973 0.2428 4.5726 53.70 58.10 0.5597

LDM 21.26 0.5239 0.4154 0.2500 6.4667 41.93 56.52 0.5695

StableSR 20.84 0.4887 0.4055 0.2542 4.6551 36.57 62.95 0.6486

ResShift 21.75 0.5422 0.4284 0.2606 6.9731 55.77 58.23 0.5948

PASD 20.77 0.4958 0.4410 0.2538 4.8328 40.77 66.85 0.6799

DiffBIR 20.94 0.4938 0.4270 0.2471 4.7211 40.42 65.23 0.6664

SeeSR 21.19 0.5386 0.3843 0.2257 4.9275 31.93 68.33 0.6946

MMSR 21.74 0.5693 0.3707 0.2071 4.2532 29.35 70.06 0.7164

DIV2K-Val-100 1024 × 1024

Methods PSNR SSIM LPIPS ↓ DISTS ↓ NIQE ↓ MANIQA MUSIQ CLIPIQA

R-ESRGAN 21.77 0.5813 0.3624 0.1990 3.6573 0.4046 47.54 0.5358

StableSR 20.07 0.3947 0.5097 0.2427 3.6260 0.4113 65.39 0.6938

PASD 21.27 0.5369 0.3473 0.1753 3.6321 0.4708 69.69 0.6914

SUPIR 20.65 0.5350 0.3849 0.1814 3.6458 0.4051 65.88 0.5697

SeeSR 21.31 0.5578 0.3273 0.1620 4.0215 0.5439 69.79 0.6941

MMSR 21.87 0.5565 0.2810 0.1492 3.4243 0.4885 72.31 0.7294

RealSR 512 × 512

Methods PSNR SSIM LPIPS ↓ LIQE NIMA MANIQA MUSIQ CLIPIQA

R-ESRGAN 25.69 0.7616 0.2727 3.3574 4.6548 0.5487 60.18 0.4449

StableSR 24.70 0.7085 0.3018 3.6106 4.8150 0.6221 65.78 0.6178

PASD 24.29 0.6630 0.3435 3.5749 4.8554 0.6493 68.69 0.6590

SUPIR 22.97 0.6298 0.3750 3.5682 4.5757 0.5745 61.49 0.6434

SeeSR 25.18 0.7216 0.3009 4.1360 4.9193 0.6442 69.77 0.6612

MMSR 24.83 0.7003 0.2952 4.3468 5.1094 0.6578 71.33 0.6717

DrealSR 512 × 512

Methods PSNR SSIM LPIPS ↓ LIQE NIMA MANIQA MUSIQ CLIPIQA

R-ESRGAN 28.64 0.8053 0.2847 2.9255 4.3258 0.4907 54.18 0.4422

StableSR 26.71 0.7224 0.3284 3.2425 4.4861 0.5594 58.51 0.6357

PASD 27.00 0.7084 0.3931 3.5908 4.6618 0.5850 64.81 0.6773

SUPIR 24.61 0.6123 0.4294 3.4710 4.3815 0.5381 57.32 0.6758

SeeSR 26.75 0.7405 0.3174 4.1270 4.6942 0.6052 65.09 0.6908

MMSR 27.28 0.7456 0.3249 4.5023 5.0558 0.6301 68.93 0.6999

Table 1. Severely degraded, low-resolution (LR) images can pro-

duce inaccurate multi-modal information, manifesting as distorted

edges, misidentified objects, and other artifacts.

MUSIQ NIQE ↓ DISTS ↓ LPIPS ↓ Throughput

w/o. MMLC 69.69 3.4845 0.1781 0.3929 3.48 img/s

w. MMLC 72.31 3.4243 0.1492 0.2810 3.32 img/s

Table 2. Ablation of the impact of the Multimodal Latent Connector

module (MMLC) on DIV2K-Val-100 1024p.

tributions of each modality by masking out input modalities

during testing. Benefiting from the improved flexibility of us-

ing multimodal token m∅, discussed in Sec. 3.1, our method

is robust in scenarios with only fewer modalities input dur-

ing testing. We would like to note several observations: (1)

Our default multimodal setting achieves the best trade-off

between the non-reference metric MUSIQ and the reference-

based metric DISTS. (2) Depth information primarily en-

hances perceptual quality (MUSIQ), while other modalities

guidance 2 10 14

cfg 0.3239 0.4491 0.5064

m∅-cfg 0.2815 0.4803 0.5493

m-cfg 0.2810 0.3471 0.3772

(a) LPIPS score

guidance 2 10 14

cfg 3.577 4.6179 5.1886

m∅-cfg 3.6261 5.1081 5.9175

m-cfg 3.4679 3.7419 3.9815

(b) NIQE score

cfg=2.0 CLIPIQA=0.4481

cfg=14.0 CLIPIQA=0.7091

m-cfg=2.0 CLIPIQA=0.4122

Segment, Depth, LR, and Edge Input m-cfg=14.0 CLIPIQA=0.7352

(c) Visual comaprisons

Table 3. Ablation of guidance on DIV2K-Val-100 1024p. Our

multimodal CFG (m-cfg) mitigates artifacts often present when

using high guidance rates. This leads to an improved balance

between visual fidelity and preservation of key identifying features.

LR Input Depth Input

w/o. MMLC Result w. MMLC Result

Figure 7. Visual results when (not) using the MMLC module.

0.14 0.15 0.16 0.17 0.18

LR-only

Text

Text+Dep

Text+Seg

Text+Edg

All Modal

0.17

0.18

0.17

0.17

0.16

0.15

68 69 70 71 72 73

70.29

69.78

72.33

71.81

70.25

72.31

(a) DISTS score (← is better) (b) MUSIQ score(→ is better)

Figure 8. Ablation of modalities on DIV2K-Val-100 1024p. In-

corporating different modalities enhances various aspects of the

super-resolution results compared to the text-guided baseline.

contribute more significantly to preserving identity (DISTS).

These results highlight the diverse contributions of each

modality and emphasize the advantage of our multimodal

approach in effectively combining their strengths for optimal

super-resolution performance.

4.2. Qualitative Results

Figures 5 and 6 provide a visual comparison of our method

against state-of-the-art approaches, namely SeeSR [65],

PASD [68], and SUPIR [71]. Our method demonstrates

several key advantages. Enhanced Realism: In the first ex-

ample of Figure 6, our method produces fewer artifacts and

remains more faithful to the high-resolution image compared

to other methods. This highlights our ability to maintain re-

alism without introducing spurious details. Robustness to
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Figure 9. Our method allows for fine-grained control over super-resolution results by adjusting the influence of each input modality. For

example, reducing the edge temperature enhances edge sharpness (first row). Lowering the segmentation temperature emphasizes distinct

features, such as the star pattern on the flag (second row). Decreasing the depth temperature accentuates depth-of-field effects, like the bokeh

between the foreground and background (third row). In contrast, PASD [68] exhibits limited control over such fine-grained details.

Challenging Conditions: The second example in Figure 6,

a long-range shot affected by noise and turbulence, shows

our method’s ability to generate clear human details where

other methods struggle. This is attributed to the effective

use of semantic segmentation for accurate human localiza-

tion, further enriched by the textual caption. These examples

illustrate the effectiveness of our multimodal approach in

generating high-quality images across diverse scenarios. See

supplemental material for additional results and analysis.

4.3. Controllability Comparisons

While recent works leverage text prompts for controlling

super-resolution [65, 68, 71], these often lack fine-grained

control and can yield inconsistent results. Our multimodal

approach introduces modality-specific temperature weights

to scale attention scores, enabling precise manipulation of

SR outputs by amplifying or diminishing the influence of

each modality (e.g., depth, segmentation). Figure 9 contrasts

our approach with PASD [68], which relies solely on text

prompts. Specifically, decreasing the temperature of the edge

modality changes the richness of details in our result, while

changing PASD’s prompt with “more edge” doesn’t change

their result. Decreasing the temperature of semantic segmen-

tation map and depth map also lead to manageable changes

such as more visible star parttern and stronger bokeh. In con-

trast, directly add corresponding prompt in PASD’s prompt

barely changes its result. Moreover, our approach exhibits

smooth transitions in image characteristics as temperatures

are adjusted, providing interpretable control and insights into

the role of each modality.

5. Conclusion

This work introduces a novel diffusion-based framework

for image super-resolution that seamlessly integrates di-

verse modalities—including text descriptions, depth maps,

edges, and segmentation maps—within a single, unified

model. By leveraging pretrained text-to-image models, our

method achieves enhanced realism and accurate reconstruc-

tion, outperforming existing text-guided super-resolution

methods both qualitatively and quantitatively. Furthermore,

a learnable multimodal token and modality-specific contri-

bution controls provide fine-grained control over the super-

resolution process, enabling adjustable perception-distortion

tradeoffs and robust performance even with imperfect or

missing modalities in most cases.

Limitations and Future Work. While adding multimodal

information significantly enhances SR performance, it intro-

duces computational overhead. For instance, using Gemini

Flash for image captioning results in a throughput of 0.34

images per second, which is slower than depth at 1.99 img/s,

semantic segmentation at 2.09 img/s, and DDIM sampling

at 0.54 img/s. However, cross-modal predictions can be

parallelized, and our method achieves speeds comparable

to other text-driven SR models [68, 71]. Future work will

explore optimizing the vision-language component for faster

inference and investigate more robust modules for extracting

modality-specific information, potentially enhancing perfor-

mance even with noisy or incomplete inputs.
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