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Abstract

Scene Text Retrieval (STR) seeks to identify all images con-
taining a given query string. Existing methods typically
rely on an explicit Optical Character Recognition (OCR)
process of text spotting or localization, which is suscepti-
ble to complex pipelines and accumulated errors. To set-
tle this, we resort to the Contrastive Language-Image Pre-
training (CLIP) models, which have demonstrated the ca-
pacity to perceive and understand scene text, making it pos-
sible to achieve strictly OCR-free STR. From the perspec-
tive of parameter-efficient transfer learning, a lightweight
visual position adapter is proposed to provide a positional
information complement for the visual encoder. Besides,
we introduce a visual context dropout technique to improve
the alignment of local visual features. A novel, parameter-
free cross-attention mechanism transfers the contrastive re-
lationship between images and text to that between visual
tokens and text, producing a rich cross-modal represen-
tation, which can be utilized for efficient reranking with
a linear classifier. The resulting model, CAYN, which
proves that CLIP is Almost all You Need for STR with no
more than 0.50M additional parameters required, achieves
new state-of-the-art performance on the STR task, with
92.46%/89.49%/85.98% mAP on the SVI/IIT-STR/TTR
datasets. Our findings demonstrate that CLIP can serve as
a reliable and efficient solution for OCR-free STR.

1. Introduction

Scene text extraction and understanding [27-32, 38, 47, 48]
have received significant attention in recent years due to the
important role of text as an information carrier. Among
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Figure 1. Illustration of the trade-off between accuracy (mAP) and
inference speed (FPS) on the SVT dataset. The proposed CAYN
achieves a better balance than existing methods.
these fundamental tasks, scene text retrieval (STR) [35, 43]
aims to find all the images containing the given text query
from a gallery, which receives great attention due to its prac-
tical applications in content retrieval and information se-
curity, e.g., product retrieval [1], electronic book archives
management [42], and video key frame extraction [36].

As a pioneer work, Mishra ef al. [25] define STR as
a text-to-image retrieval problem and point out the inef-
ficiency of imposing an exact localization-and-recognition
(spotting) pipeline. To solve it, they propose a query-driven
search approach where approximate locations of charac-
ters in the text query are first found, then the images are
ranked with the likelihood of containing characters from
the query text for matching, and finally, spatial constraints
are imposed for re-ranking to generate a ranked list of im-
ages. The method sets up a standard localization-based
pipeline for STR, which outperforms spotting-based meth-
ods [8, 12,20, 21] in terms of both speed and accuracy [11].
For this reason, a detection or segmentation head has been a
common component in subsequent research [7, 39, 41, 49].
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Figure 2. Comparison of pipelines between existing STR methods
and ours (the text branch is omitted for simplicity). “L” and “T”
represent the supervision of localization and transcription levels.
“FE” denotes the feature extractor. “Loc”: Localization; ‘Rec’:
Recognition; “Ret”: Retrieval; “Rer”: Reranking.

Benefiting from the sharing of feature extractors
and joint optimization in localization and matching,
the localization-based approach has achieved remarkable
progress in recent years as shown in Fig. 1. However, lo-
calization, as a necessary process in existing works, in-
troduces inevitable accumulated errors and complicates the
whole STR pipeline. The other issue lies in the inefficiency
and inflexibility of training and maintaining a scene text re-
triever, which requires a long pre-training period on large-
scale synthetic data [7] and a full fine-tuning of a large num-
ber of parameters on a real STR dataset [26].

Recently, the contrastive language-image pre-training
(CLIP) [33] models are proposed, which bridge the gap be-
tween the modality of vision and language, have demon-
strated the ability to perceive and understand scene text,
bringing new paradigms to the document analysis and un-
derstanding community [40, 44, 45]. FDP [49] first ex-
plores the leverage of the CLIP models for STR, which first
performs a tough text localization at the feature level and
then utilizes the localization information and “scene text”
prompt to guide the CLIP models to focus on scene text
regions. Queries are distinguished as content and function
words combined with class-aware learnable prompts to tune
the CLIP models. Despite impressive performance, FDP re-
quires an explicit localization process, resulting in a com-
plex pipeline. Besides, FDP introduces more than 20M
extra parameters, resulting in a long training process and
substantial parameters to be maintained. In this regard, a
natural question is raised: Is it possible to realize strictly
OCR-free but accurate STR while keeping efficient at both
training and inference stages?

To answer the question, we first carefully examine the
potential of CLIP on STR by exploring hand-crafted tex-
tual prompt design and visual position embedding interpo-
lation. As a result, we find that interpolating visual position
embeddings can already serve as a strong baseline with-
out introducing extra annotations or fine-tuning. However,
directly interpolating visual position embeddings may in-
troduce positional information loss. As compensation, we
propose a lightweight visual position adapter (VPA) to pro-
vide positional information for the visual encoder. Inspired
by Mishra et al. [25], we seek to rerank the top images
ranked by the contrastive cross-modal similarity. A visual

context dropout (VCD) technique is introduced to generate
locally aligned visual features. Besides, we propose a novel
parameter-free cross-attention mechanism that transfers the
contrastive relationship between images and text to that be-
tween tokens and text, resulting in a rich cross-modal rep-
resentation. We employ a linear classifier on the represen-
tation to predict the degree of image-text matching as the
reranking scores. Extensive experiments on three bench-
marks show that the proposed method, CAYN, can achieve

SOTA performance with fast speed. CAYN achieves strictly

OCR-free STR with no more than 0.50M additional param-

eters required. The comparison between CAYN and exist-

ing methods is illustrated in Fig. 2.

The overall contributions can be summarized as follows:

* We realize the first strictly OCR-free STR without ex-
plicit localization or recognition processes, eliminating
the intermediate errors and simplifying the STR pipeline.

* A comprehensive study is performed to evaluate the abil-
ity of CLIP models on STR, providing a strong zero-
shot baseline. From the perspective of parameter-efficient
transfer learning (PEFT), a visual position adapter with
no more than 0.50M is introduced to adapt the CLIP mod-
els to a large input resolution efficiently.

* The proposed method aims to unleash the potential of
CLIP models to a maximum extent. Novel parameter-free
attention is proposed for multimodal interaction based on
fine-grained representation; only a light linear classifica-
tion head is required for reranking.

» Experiments on three public datasets across ResNet- and
ViT-based CLIP models demonstrate that CAYN outper-
forms existing methods in terms of speed and accuracy.

2. Related Work
2.1. Scene Text Retrieval

Existing STR methods can be categorized into localization-
based [7, 24, 39, 41, 49] and spotting-based [8, 12, 20, 21,
25] in which explicit localization (and recognition) process
is/are utilized to perceive scene text.

Spotting-Based STR firstly utilizes an OCR engine for
text extraction and then matches results with the given
query. Normalized Levenshtein distance, widely used in
string matching, is adopted as the similarity measure for
ranking all image candidates. Jaderberg et al. [12] leverage
a deep convolutional network for text spotting, in which the
matching score is computed by averaging the word proba-
bility distributions across all detections in an image. With
the rapid development of scene text spotting, state-of-the-
art text spotting methods [2, 20, 21] are adopted to improve
the performance. However, the approach suffers from both
the accumulative errors from the localization and recogni-
tion, making it hard to meet the high speed and accuracy
requirement in real applications.
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Localization-Based STR formulates STR as two com-
bined tasks: text localization and word-spotting, which
makes it easy to borrow from the two well-developed sub-
fields. Considering the requirement of fast inference speed,
fast one-stage detection frameworks [34, 37] are utilized for
constructing efficient STR system [24, 34, 39, 41]. Accord-
ing to the measurement of the manner of similarity between
the query and the document candidates, existing methods
can be mainly divided into PHOC-based [7, 24], cross-
modal similarity-based [39, 49], and prototype-based [41].
Upon the CLIP visual features, FDP [49] adds a segmenta-
tion head for scene text localization, and then the obtained
segmentation map is binarized and taken as the attention
mask to generate the global image representation, which
makes it not fully OCR-free. Although localization-based
STR has achieved great progress, whether an explicit local-
ization process is required for STR is still an open problem.

2.2. OCR-Free Document Understanding

Recently, a series of OCR-free document understanding
methods have been proposed, benefiting greatly from large-
scale pre-training. For instance, Donut [I15] proposes
the first end-to-end training OCR-free document trans-
former, pre-trained with large-scale synthetic documents.
Pix2Struct [16] is pre-trained by learning to parse masked
screenshots of web pages into structured format i.e., sim-
plified HTML, followed by a variable-resolution input doc-
ument representation. StrucTexTv2 [46] proposes a self-
supervised pre-training framework, in which segment-level
document image masking is introduced to learn joint visual-
textual representation. Compared to common document
understanding tasks like DocVQA, the STR task can be
viewed as a relatively low-level document understanding
task that predicts whether the documents contain a provided
query. Through large-scale pre-training, the connection be-
tween visual text and text is established, bringing new pos-
sibilities for document understanding as well as STR.

2.3. Parameter-Efficient Tuning

With the prevalence of pre-training models, e.g., BERT [4]
and CLIP [33], parameter-efficient tuning (PET) becomes a
practical technique that maintains the ability of pre-training
models and can efficiently transfer to downstream tasks
[3] with few parameters and computations. Among them,
adapters [3, 9, 10] and prompt learning [13, 17, 51] are two
dominant and active branches in PET.

Adapters [9] are lightweight learnable modules inserted
in pre-trained models. Specifically, the weights from the
pre-training stage are frozen to preserve general knowl-
edge and the parameters of adapters are tuned to learn task-
specific knowledge. Hu et al. [10] propose low-rank adap-
tation (LoRA), which freezes the pre-trained model weights
and injects trainable rank decomposition matrices into each

layer of the transformer architecture, greatly reducing the
number of trainable parameters for downstream tasks. Chen
et al. [3] introduce an effective adaptation approach for vi-
sual transformer, which can adapt the pre-trained ViTs into
many different image and video tasks. CLIP-Adapter [5]
proposes to conduct fine-tuning with feature adapters on ei-
ther the visual or language branch, which can achieve com-
petitive performance while maintaining a simple design.

Prompt Learning [17] aims to unleash the potential
of the pre-trained language/vision-language models with
learnable prompt input. Li et al. [19] propose a lightweight
alternative to fine-tuning for natural language generation
tasks, which keeps language model parameters frozen and
instead optimizes a sequence of continuous task-specific
vectors, allowing subsequent tokens to attend to this pre-
fix. CoOP [52] proposes to introduce a learnable context in
text prompt for vision-language models like CLIP, which is
improved by CoCoOp [51] via introducing context condi-
tioned on visual inputs. Comparatively, VPT [13] proposes
visual prompt learning which involves learnable context in
the visual backbone. For STR, FDP [49] introduces class-
aware prompt learning, which learns individual contexts for
content and function words separately. Despite achieving
great progress, PET remains less explored for STR.

3. Methodology

Given a set of text queries Q = {Q1, ..., Qn, }» STR aims
to find all the images that contain the text query from the
document gallery D = {Dq, ..., Dy, }. The overall frame-
work of the proposed framework is shown in Fig. 3, which
includes retrieval in a contrastive manner and reranking ac-
cording to the matching degree of image-text pairs.

The section is organized as follows. We first attempt to
adapt CLIP models for the STR task with different input im-
age resolutions and text prompts, followed by the retrieval
and reranking parts. The label generation and optimization
processes are presented at last.
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Figure 3. The overall framework of the proposed method. It
mainly comprises the retrieval and reranking stages, in which only
the VPA and the linear classifier are tunable.

i
i@ Concatenate Operation

i i
i S . S .
}® Cosine Distance Calculation :

Images D

3.1. Exploring CLIP’s Ability on STR

Despite the great success of adapting CLIP to visual [52]
and cross-modal tasks [14], the adaption of CLIP for the
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STR task remains less explored. To achieve this, we per-
form pre-experiments from two aspects i.e.: exploring pre-
defined prompts and extending to a large-resolution image
input. We denote the extension of the original CLIP as “EX-
CLIP”, which is demonstrated to be a strong baseline.
Retrieval with CLIP. The queries and documents are en-
coded by the language and vision encoders of CLIP respec-
tively to obtain the global representation Fy € RNe*E
and Fp € RVpXF (E denotes the embedding dimension),
and the cosine similarity between each query-document pair
from Fg and Fp is computed to rank all the documents in
a paradigm of dense retrieval, resulting a similarity matrix
S € RNe*Np for evaluation.

Table 1. Zero-shot performance of EXCLIP-RNS50 at a resolution
of 512 with different predefined prompts on the SVT and TTR
datasets. {query} denotes the content of a query string.

Predefined prompt (string content) | SVT TTR
{query} 65.56  33.63
scene text {query } 49.06 23.86
the text {query} 53.55 2591
the word {query} 67.08 36.16
“{query}” 72.81 41.87
the word “{query}” 69.54 42.01
a photo contains the word “{query}” | 69.86 41.74
the word “{query}” in a photo 68.57 38.57

Hand-Craft Textual Prompt Design. Following the
prompt engineering in [33], we attempt to endow the in-
put query with more specific semantics for the downstream
STR task. As shown in Tab. 1, interestingly, we find that a
simple prompt with a pair of quotation marks shows a strong
semantic relation with the text query, which performs best
with the RN50 backbone among all predefined prompts and
is chosen as the default prompt template for the work.
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Figure 4. Zero-shot performance of EXCLIP models at different
input resolutions on the SVT and TTR datasets.

Visual Position Embedding Interpolation. One major
limitation of extending CLIP to large input is the fixed-
length position encoding in attention layers. Since the rela-
tive 2D position relationship is kept in the visual backbone,
one direct solution is directly interpolating the embedding
to different sizes. In particular, “bicubic” interpolation is
adopted to transform pre-trained visual position embedding,
which allows the CLIP models to deal with other sizes of
input. As shown in Fig. 4, several points can be concluded
1) Interpolating position embeddings in ResNet backbones

generalizes much better than that in ViT backbones (can
only work well in a relatively small scope) on larger input
sizes. 2) Performance improves with the increase of pa-
rameters, demonstrating the scaling ability on the STR task.
3) Surprisingly, we find the RN50x16 model can achieve a
performance of 83.08% at most, which is already compa-
rable to single-shot-str [7], demonstrating the potential of
CLIP models being a strong scene text retriever. Based on
the above results, we mainly choose the RN50, RN50x4,
RN50x16, and ViT-B-16 in experiments and set the image
size of adapted models as shown in Tab. 2, considering the
trade-off between speed and accuracy.

Table 2. The setting of models in this work. We expand the origi-
nal size in CLIP to better adapt to the STR task.

Backbone ‘ Org_Size Exp-_Size E

RN50 224 512 1024
RN50x4 288 576 640
RN50x16 | 384 640 768
VIiT-B-16 | 224 512 512

For the CLIP-ViT models, we find that the generalization
of interpolate visual position embedding is relatively weak,
which may be attributed to the shallow encoding of posi-
tion information in the transformer architecture. We fol-
low existing works to combine a splitting strategy [22] to
ensure each split is within the working scope of the CLIP
models. For an image with 512 x 512 input size, we can
split the input image with 2 x 2 subdivisions for the ViT-B-
16 model. The similarity scores are computed between the
query and each sub-image, in which the highest score serves
as the global matching score. ResNet models demonstrate a
higher upper limit even though the split is introduced in ViT
models. However, PET adaption of ViT models remains de-
served for research, which is absent in existing work [49].

3.2. Retrieval with Rich Visual Representation

Besides the improvement by tuning text prompts and en-
larging image resolutions, a novel lightweight visual posi-
tion adapter (VPA) is proposed for efficient adaption. The
proposed VPA aims to solve the challenge of the large vari-
ation in resolution from the perspective of PET, which gen-
erates rich visual features by providing the positional infor-
mation supplement with a high parameter compression rate.
Visual Position Adapter. Unlike existing works that intro-
duce layer-wise adapters [6, 10] in encoders or adapters at
the end of encoders [5], the proposed VPA is inserted af-
ter convolutional features are flattened into tokens before
the attention layer, as shown in Fig. 5. Given an input of
x € R'*?, the feed-forward process of the adapter module
can be written as follows:

Ly = U(wwdown)7 (1)
ZTout = T + sigmoid(x, Wy) - (€, W), 2)
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Figure 5. Illustration of the VPA and VCD in CLIP visual encoders
based on (a): ResNet and (b): ViT. The detailed architecture of
VPA is shown in (¢). The dotted line denotes that local features
are generated with VCD.

where Wiown € RIT, W, W, € R¥X4 (4 «
d,r denotes the reduction ratio) are down-projection, up-
projection, and a learnable scale factor projection respec-
tively, and o is a non-linear layer which is implemented
with a ReLU in the work.

Considering a batch of /N matched image-text pairs, the
similarities across the global visual features v9 € RN*F
and textual features t9 € RY*¥ are computed to obtain a
N x N matrix. The symmetric cross-entropy loss [33] is
adapted for optimization, which can be defined as follows:

1 im(¢7, v?
Eretrieval = T on ( Z log ]\e[Xp(Slm(tl ) )/T>
2N i=1 Zj:l eXp(Sim(tf,ng)/T)
3)

eXp Slm( 'L’ z)/T) )
Yo exp(sim(vf, t9) /)

—l—Zl

where sim(., .) and 7 denote the cosine similarity computa-
tion and the learnable temperature factor, respectively.

3.3. Reranking with Fine-grained Alignment

In the reranking stage, a classical image-text matching task
is performed with features from the CLIP encoders.

Visual Context Dropout. The CLIP visual encoder can
be formulated as f = fy o fi as shown in Fig. 5, where
f1 and f5 denote the front and rear parts of the visual en-
coder, respectively. Specifically, f denotes the module that
includes the last attention layer, i.e., the attention pooling
layer in ResNet and the last transformer layers in ViT. A
global feature is pooled from the local features according to
the attention mechanism, which can be seen as a weighted
sum of transformed tokens by the value projection. From
the perspective of each token, attention brings context as
well as noise; the alignment with the cross-modal represen-
tation space learned by CLIP may be suboptimal. Due to the
symmetrical relationship for all visual tokens, the value pro-
jection may already be good enough for fine-grained align-
ment, which has been demonstrated in zero-shot semantic
segmentation [50]. So we drop out the visual context in

attention layers in f,, degenerate attention to a linear trans-
form (parameterized by the value projection) to get locally
aligned visual features v € RV*NvxE,

Parameter-Free Cross-Attention. The cross-attention
mechanism can efficiently enhance global features by in-
corporating local features, which are usually implemented
through a multi-head attention layer [18]. However, it is
challenging to achieve cross-modal fine-grained alignment
with limited data in downstream tasks. Alternatively, we
propose to directly re-utilize aligned local visual features
v! to perform a parameter-free cross-attention queried by
global textual features 9, based on the assumption that the
contrastive relationship between batched texts and images
can be well transferred to that between texts and tokens
from the same image if the local token-level features v
are in approximately the same presentation space with the
global image-level features v9 (illustrated as t9 < v9 S
v'). We use a residual connection to combine the aggre-
gated features. The process can be represented as:

exp(sim(t{, v! /) .
N . : Vi
Zj:l exp(sim (¢, ”é,j)/T)

Symmetrically, we can aggregate local text features t' &
RN*N7XE gueried by the global visual features v9:

+

“)

td =t

exp(sim(v?, ¢ .)/7)

i Y,j
N
2= exp(sim(vf, £ ;)/7)
The enhanced features are then concatenated along the
embedding dimension to predict the matching degree of the

image-text pair p € RM*2 with a linear classifier parame-
terized with W, € R2E%2:

p = CAT(t9,99) - Wip,. (6)

The predicted logits p are then normalized and supervised
with a cross-entropy loss:
eXp p" yz)

M Z Y exp(pij)

where y; denotes the matchlng label of the i-th image-text
pair within the M pairs.

For the ViT models, the split sub-images are batched en-
coded, resulting in global features v9 € RN*NsxE and
local features v! € RINXN:)XLXE e reshape the local
features to concatenate the splits along the context length
dimension to v' € RNX(NsxL)XE: the olobal feature v9 is
aggregated with a PFCA queried by the global textual fea-
tures t9, similarly with attention in Eq. (4) but the attention
dimension changes from the contexts to splits.

During inference, only images with top rank from the
retrieval stage participate in the reranking process. For top
K (K < Np) images per query, we update the matching
scores with the sum of the original scores and the image-text
matching scores, making the reranking quite efficient.

A9 _ .0
;] = v;

1
th. ©®

(N

E'rerank:ing
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Table 3. Comparison with existing methods on the SVT, IIIT-STR, and TTR datasets. Bold indicates the best performance, and underline
indicates the second-best performance. “Params” means the number of fine-tuned parameters. “L” and “T” denote the supervision of

localization and transcription labels, respectively.

Method | Venue | Params | Supervision |  SVT HIT-STR TTIR | FPS
Jaderberg et al. [12] IICV’16 | ~500.00M L+T 86.30 66.50 - 0.30
Busta ef al. [2] ICCV’17 - L+T 69.37 62.94 - 4421
He et al. [8] CVPR’18 - L+T 80.54 66.95 - 235
Mask TextSpotter v3 [20] ECCV’20 45.47TM L+T 84.54 74.48 72.42 2.40
ABCNet [21] CVPR’21 36.88M L+T 8243 67.25 69.30 17.50
Mishra et al. [25] ICCV’13 - L+T 56.24 42.70 - 0.10
Gomez et al. [7] ECCV’18 58.64M L+T 83.73 69.83 66.02 43.50
Mafla et al. [24] PR’21 58.64M L+T 85.74 71.67 - 42.20
TDSL [39] CVPR’21 33.85M L+T 89.38 77.09 74.75 12.00
Wen et al. [41] WSDM’23 - L+T 90.95 77.40 80.09 11.00
FDP-S [49] MM’24 40.68M L+T 82.56 81.77 65.26 45.11
FDP-B [49] MM’24 22.55M L+T 86.64 86.65 73.63 31.43
FDP-L [49] MM’24 33.45M L+T 89.63 89.46 79.18 11.82
EXCLIP-RN50 ICML'21 - 72.81 63.70 41.87 82.54
EXCLIP-RN50x4 ICML21 - 74.64 61.84 4223 56.26
EXCLIP-RN50x16 ICML21 - 81.60 64.04 44.26 39.27
CAYN-RN50 (Ours) - 0.20M T 85.05 82.88 74.04 80.13
CAYN-RN50x4 (Ours) - 0.31M T 88.94 85.77 81.90 5322
CAYN-RN50x16 (Ours) - 0.45M T 92.46 89.49 85.98 38.79

3.4. Label Generation and Optimization

Label Generation. Unlike the noisy data in CLIP pre-
training, accurate query-document matching labels are
available in STR tasks. We follow the label generation in
CLIP [33] to provide one-hot labels in the retrieval stage,
which works well in the downstream STR task.

In the reranking stage, the use of accurate matching la-
bels and hard example sampling for optimization is proven
to be crucial. To be specific, for image-text pairs, we adopt
a hardness-aware sampling, in which the negatives are sam-
pled according to the normalized softmax probability within
a batch. The ratio of positive and negative pairs is set to 1:2.
Optimization. The retrieval and reranking stages are
jointly optimized, which can be defined as:

®)

where A is a balance factor for the retrieval and reranking
losses and is set to 1.0 in our experiment.

L= Eretrieval + /\Lrerankinga

4. Experiments
4.1. Datasets

The main experiments are conducted on common STR
benchmarks including Street View Text (SVT), IIIT Scene
Text Retrieval (IIIT-STR), and Total-Text Retrieval (TTR).
For more details, please refer to the Appendix.

Following the existing methods [39, 41, 49], the model
is only trained on the MLT5k dataset and tested on other
datasets, including SVT, IIIT-STR, and TTR. The retrieval
performance is evaluated with the mean average precision
(mAP) measure following existing works [25, 39], which is
the mean of the average precision for all the queries.

4.2. Implementation Details

Training. The models are trained for a total epoch of 10
on the MLT5k dataset with an AdamW [23] optimizer. The
initial learning rate is set to 0.0005 with a batch size of 64
for CLIP-ResNet and 28 for CLIP-ViT, following a “con-
stant” learning rate policy. The pre-processing includes re-
sizing the long side of the image to an integer multiple of
patch size, followed by zero-padding the image to a squared
shape, which can avoid the information loss resulting from
the cropping operation [33] in the pre-processing stage.
Inference. During inference, the pre-processing pipeline
and the test scale are identical to those in the training stage.
The models are evaluated following [49] with a batch size
of 1. The number of reranked images K is set to 32 on all
three datasets.

4.3. Comparisons with State-of-the-Art Methods

We validate the proposed method on several public datasets
of different types, including SVT, IIIT-STR, and TTR, to
demonstrate the effectiveness of CAYN on efficient and ac-
curate scene text retrieval. As shown in Tab. 3, in general,
the proposed method CAYN outperforms existing methods,
including OCR-based and localization-based methods, and
maintains a fast inference speed.

Accuracy-Speed Trade-Off. CAYN-RN50x16 achieves
the SOTA performance of 92.46%, 89.49%, and 85.98%
at 38.79 FPS on the SVT, IIIT-STR, and TTR datasets, re-
spectively, and outperforms recently proposed FDP-L [49]
by a large margin of 2.83% and 6.80% on the SVT and
TTR datasets in terms of mAP. CAYN-RN50x16 runs at
38.79 FPS and is 3 times faster than FDP-L. CAYN-RNS50
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Table 4. Comparison of variants of CAYN with different model configurations on the SVT and TTR datasets.

4 Retrieval Reranking RN50 ViT-B-16

VPA VCD PFCA Params | SVT TTR Params | SVT TTR
0 - - - - 72.81 41.87 - 68.43 39.23
1 v X X 0.20M 81.98 66.54 0.22M 75.11 62.96
2 X v v 4098 80.19 55.67 2050 74.27 54.37
3 v X v 0.20M 82.83 68.02 0.22M 69.70 59.65
4 v v v 0.20M 85.05 74.04 0.22M 77.44 68.45
5 v v MHCA 8.60M 79.09 68.10 2.30M 7217 61.07

95 92

runs fastest at 80.13 FPS and achieves the performance
of 85.05%/82.88%/74.04% mAP on the three datasets.
CAYN-RN50x4 can achieve a good balance between speed
and accuracy with 88.94%/85.77%/81.90% mAP at 53.22
FPS. Compared to mainstream localization-based methods,
CAYN benefits from learning global-level similarity, en-
abling efficient image ranking without the errors associated
with explicit localization.

Tuned Parameters & Reliance on Labels. From the per-
spective of PET, the tuned parameters of CAYN are 0.20M,
0.31M, and 0.45M in RN50, RNx4, and RN50x16 respec-
tively, which are much less than existing methods (no more
than 2% parameters of FDP [49]) that require 20M+ param-
eters to be tuned. Considering the requirement for annota-
tions, due to the nature of localization-free, CAYN does not
need localization labels. Only weak transcription-level an-
notations of image-text matching are required, without the
need to know the number of instances.

4.4. Ablation Study

The ablation study is conducted on a regular text dataset
SVT and a curved text dataset TTR to demonstrate the ef-
fectiveness of the proposed modules in Tab. 4, which in-
clude both ResNet-based and ViT-based CLIP models.
Effectiveness of VPA. As shown in Tab. 4, we can see that
the proposed VPA improves the performance significantly
for both RN50 and ViT-B-16 on the two datasets. For the
RN50 backbone, VPA achieves 9.17% and 24.67% perfor-
mance gain in terms of mAP on the SVT and TTR datasets.
For the ViT-B-16 backbone, VPA brings 6.68% (on the SVT
dataset) and 23.73% (on the TTR dataset) improvements.
Moreover, compared to the total parameters of 102.01M
and 149.62M for the RN50-based and ViT16-based CLIP
models, VPA only brings 0.20M and 0.22M additional pa-
rameters to the two backbones.

Effectiveness of reranking with VCD and PFCA. As
shown in Tab. 4 and Fig. 6, reranking can consistently im-
prove the performance upon both the EXCLIP and VPA re-
trieval baselines with minimum parameters of a linear clas-
sifier and is also efficient in training. On the SVT and
TTR datasets, reranking brings 7.38% and 13.80% (RNS50),
and 5.84% and 15.14% (ViT16) enhancement, respectively,
compared with the EXCLIP baseline. Compared with the
VPA baseline, improvements of 3.07%/7.50% (RN50) and
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Figure 6. Comparison between CAYN and the retrieval-only (_ret)
version with different backbone models on the SVT and TTR
datasets. Reranking consistently improves performance.

Retrieval Results Method

Query

“school”

“center”

Figure 7. Visualization of Top-5 retrieval results. The correct and
incorrect results are highlighted in green and red, respectively.

(b) Query: “coffee”

Figure 8. Visualization of attention maps of PFCA (upper rows)
and MHSA (bottom rows) based on RN50.

2.33%/5.49% (ViT16) are obtained respectively. Besides
the quantitative results, as shown in Fig. 7, the retrieval
quality is also improved significantly with reranking.
When removing VCD, the performance on the SVT and
TTR datasets drop 2.22% and 6.02% with RN50 and 7.74%
and 8.80% with ViT16, demonstrating that the dropout of
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visual context in the last attention layers brings better local
alignment and is helpful in PFCA. To demonstrate the ef-
fectiveness of PFCA, we replace PFCA with a multi-head
cross-attention (MHCA). Decreases of 5.96% and 5.94%
(RN50) are found on SVT and TTR, as well as an mAP
drop of 5.27% and 7.38% upon ViT16, which illustrates
that CLIP models have been well aligned without the re-
quirement of extra alignment layers. As shown in Fig. 8,
PFCA can produce more accurate and concentrated atten-
tion maps than MHCA without introducing any parameters,
demonstrating the superiority of the proposed PFCA.
Comparing VPA with Other PET Methods. To fur-
ther demonstrate the effectiveness of the proposed VPA,
we compare it with other PET techniques on the SVT and
TTR datasets, including CLIP-adapter [5], CoOP [52], and
Extra VPE used in FDP [49]. As shown in Tab. 5, com-
pared with the zero-shot EXCLIP baseline, PET on the
STR task generally improves performance on both SVT
and TTR. Among all methods, CoOP [52] brings the min-
imum number of parameters. However, due to the capac-
ity and limited representation, context optimization falls be-
hind other methods by an obvious margin, especially on the
TTR, which explains the relatively poor performance of the
prompt learning-based FDP method on the TTR dataset.

Table 5. Comparison of VPA variants and other PET methods
based on CLIP-RNS50 on the SVT and TTR datasets.

Method | Params |  SVT TTR
EXCLIP | - | 7281 41.87
CoOP [52] 2048 78.70 51.01
CLIP-adapter [5] 0.52M 77.88 56.01
Extra VPE [49] 0.53M 79.35 64.21
Textual adapter 0.20M 76.86 54.06
Visual adapter 0.20M 77.28 54.43
VPA (Ours) 0.20M 81.98 66.54

Compared with the Extra VPE learning used in FDP
[49], VPA outperforms it by 2.63% and 2.33% with fewer
parameters. Besides, the parameters of VPA are not depen-
dent on the resolution, whereas the parameters of Extra VPE
increase quadratically. At last, we introduce two variants
of textual and visual adapters for comparison, which are in-
serted at the bottom of the textual and visual encoders. VPA
outperforms both variants clearly on both SVT and TTR,
demonstrating the superiority of VPA that can supply the
visual position information to adapt to higher resolutions,
which matters for scene text perception.

Table 6. Comparison of different reduction ratios of VPA based on
the RN50 backbone on different datasets.

Reduction ‘ 4 8 16 32 64 128 256
Params ‘ 3.15M 1.58M 0.79M 0.40M 0.20M 0.10M 0.05M
SVT 82.07 80.88 80.83 81.12 8198 81.44 80.69
TTR 66.76 67.56 68.17 67.06 6654 6634 66.98

Function of Components in VPA. As shown in Tab. 6,

Table 7. Comparison of different components in the proposed VPA
on different datasets.

Method | Params | SVT TTR
VPA 0.20M 81.98 66.54
w/o residual connection 0.20M 50.54 38.15
w/o scaling factor projection | 0.13M 80.52 65.96

Table 8. Different modality of queries used in PFCA.

Text Vision ‘ SVT TTR IIIT-STR
- - 81.98 66.54 81.79
v X 85.84 73.33 82.71
X v 72.80 61.03 80.12
v v 85.05 74.04 82.88

VPA works well with different reduction ratios. Consid-
ering the trade-off between parameters and performance,
we set the reduction ratio to 64 for ResNet models. For
ViT models, the reduction ratio is set to 8 to ensure the pa-
rameters are close. As shown in Tab. 7, without a residual
connection, VPA degenerates into a direct MLP network,
making it ineffective in the PET manner. With the constant
scaling factor, the project can learn the channel-wise im-
portance of the adapted features, thus improving the overall
performance with few parameters.

Function of Modalities in PFCA. As reported in Tab. 8§,
we find that using text query only (refer to Eq. (4)) has al-
ready achieved remarkable performance. The reason lies in
the gap in information density between the textual and vi-
sual modalities, which is also directly related to the STR
task, in which the text modality acts as the query. Compara-
tively, the global representation of an image contains much
noise for textual context as described in Eq. (5), leading to
ineffective cross-modal interaction. However, the reranking
performance on IIIT-STR, which contains large-scale back-
ground images without text, is somewhat good, demonstrat-
ing the function of query-by-vision features on distinguish-
ing text/non-text images. As a result, we keep the symmet-
ric cross-modal interaction for reranking.

5. Conclusion

In this paper, following the spirit of PET, we propose a novel
strictly OCR-free method termed “CAYN” for efficient and
accurate STR based on the CLIP models. A comprehen-
sive study is conducted to explore the potential of CLIP for
STR, proving that CLIP can serve as a strong baseline by
interpolating position embeddings. We propose a visual po-
sition adapter to complement the visual encoder’s positional
information. A visual context dropout technique is intro-
duced to generate locally aligned visual features. Besides,
we propose a novel parameter-free cross-attention mecha-
nism for cross-modal feature aggregation, which is used to
perform image-text matching with a linear classifier. The
experiments on three public benchmarks demonstrate that
the CAYN can outperform existing methods and be efficient
in training and inference.
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