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A. Murat Tekalp
Koç University, Istanbul, Turkey; mtekalp@ku.edu.tr

ABSTRACT
Recent advances in neural signal processing led to significant
improvements in the performance of learned image/video
restoration and super-resolution (SR). An important benefit
of data-driven deep learning approach to image processing
is that neural models can be optimized for any differentiable
loss function, including perceptual loss functions, leading to
perceptual image/video restoration and SR, which cannot
be easily handled by traditional model-based methods.
We start with a brief problem statement and a short discus-
sion on traditional vs. data-driven solutions. We next review
recent advances in neural architectures, such as residual
blocks, dense connections, residual-in-residual dense blocks,
residual blocks with generative neurons, self-attention and
visual transformers. We then discuss loss functions and eval-
uation (assessment) criteria for image/video restoration and
SR, including fidelity (distortion) and perceptual criteria,
and the relation between them, where we briefly review the
perception vs. distortion trade-off.
We can consider learned image/video restoration and SR
as learning either a nonlinear regressive mapping from de-
graded to ideal images based on the universal approximation
theorem, or a generative model that captures the probabil-
ity distribution of ideal images. We first review regressive
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inference via residual and/or dense convolutional networks
(ConvNet). We also show that using a new architecture with
residual blocks based on a generative neuron model can out-
perform classical residual ConvNets in peak-signal-to-noise
ratio (PSNR). We next discuss generative inference based on
adversarial training, such as SRGAN and ESRGAN, which
can reproduce realistic textures, or based on normalizing
flow such as SRFlow by optimizing log-likelihood. We then
discuss problems in applying supervised training to real-life
restoration and SR, including overfitting image priors and
overfitting the degradation model seen in the training set.
We introduce multiple-model SR and real-world SR (from
unpaired training data) formulations to overcome these prob-
lems. Integration of traditional model-based methods and
deep learning for non-blind restoration/SR is introduced as
another solution to model overfitting in supervised learning.
In learned video restoration and SR (VSR), we first discuss
how to best exploit temporal correlations in video, includ-
ing sliding temporal window vs. recurrent architectures for
propagation, and aligning frames in the pixel domain using
optical flow vs. in the feature space using deformable convo-
lutions. We next introduce early fusion with feature-space
alignment, employed by the EDVR network, which obtains
excellent PSNR performance. However, it is well-known that
videos with the highest PSNR may not be the most appeal-
ing to humans, since minimizing the mean-square error may
result in blurring of details. We then address perceptual
optimization of VSR models to obtain natural texture and
motion. Although perception-distortion tradeoff has been
well studied for images, few works address perceptual VSR.
In addition to using perceptual losses, such as MS-SSIM,
LPIPS, and/or adversarial training, we also discuss explicit
loss functions/criteria to enforce and evaluate temporal con-
sistency. We conclude with a discussion of open problems.
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Introduction

Deep learning has made significant impact not only on computer vision
and natural language processing but also on classical signal processing
problems such as image/video restoration/super-resolution (SR) and
compression. This paper reviews recent advances and the state of the
art in image/video restoration and SR using deep learning. It is worth
noting that the nonlinear neural signal processing techniques discussed
in this paper also apply to other inverse problems in imaging.

This chapter provides an introduction to image restoration and
SR problems, including a general overview of classical model-based vs.
modern data-driven solutions. We start with the problem statement in
Section 1.1, where we pose image restoration/SR as an ill-posed inverse
problem. Linear model-based regularization of ill-posed inverse problems
is reviewed in Section 1.2. Limitations of linear, shift-invariant (LSI)
regularization are discussed in Section 1.3. Next, Section 1.4 provides
an overview of classical nonlinear model-based regularized inversion vs.
modern data-driven learned approaches. We introduce the three pillars
of learned image/video restoration and SR solutions: the architecture,
the optimization and evaluation criteria, and training in Section 1.5.
Finally, we briefly discuss other related survey articles in Section 1.6.

3



4 Introduction

1.1 Problem Statement

Inverse problems in imaging are those problems, where we want to solve
for the ideal image vector x given a nonlinear observation model

y = D(x) + v (1.1)

where y denotes the observation vector, D is a nonlinear degradation
operator, and v is the observation noise vector. In the traditional
formulation of inverse problems, the degradation (forward) model is
assumed to be linear, which can be expressed as

y = DHx + v (1.2)

where H denotes a linear degradation operator, and D is an observation
matrix. This linear observation model includes the following image
restoration problems as special cases:

• The denoising problem, where D=H=I (identity matrix).
• The deblurring problem, where D=I and the matrix H is deter-

mined by the blur point spread function (PSF).
• The super-resolution (SR) problem, where D and H represent

the sub-sampling operation and the anti-alias filter, respectively.
• The image inpainting problem, where the elements of matrix D

that correspond to missing pixels are set to zero.

1.1.1 Ill-Posed Problems

According to Hadamard, a problem is well-posed if it satisfies the fol-
lowing conditions (Tikhonov and Arsenin, 1977): i) a solution exists,
ii) the solution is unique, and iii) small perturbations (noise) in the
observations (input) results in small changes in the solution. Problems
that are not well-posed in the sense of Hadamard are called ill-posed.

Inverse problems in imaging are often ill-posed because the matrices
D and/or H may be non-square with more unknowns than the number
of equations; hence, the solution either does not exist and/or is not
unique, and/or the condition number of matrix H is large so that
the solution is highly sensitive to observation noise.
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1.1.2 Non-blind vs. Blind Image Restoration and SR

We can classify inverse problems as non-blind or blind depending on
whether the degradation operator and observation noise level in Eqn. 1.1
and Eqn. 1.2 are known or not.

A low resolution (LR) image is modeled as down-sampled version
of an ideal high resolution (HR) image. We typically model the anti-
alias filtering in the down-sampling operation by a bicubic filter; hence,
this process is often referred as bicubic downsampling. In real-world
applications, there are additional sources of blur in LR image formation,
such as motion blur or camera shake blur, which is represented by a
convolution kernel k, given by

y = (k ∗ x) ↓ +v (1.3)

where ↓ denotes bicubic downsampling. While the blur due to ↓ is a
bicubic filter, the additional source of blur, denoted by k is usually
unknown and image specific.

Non-blind image restoration and SR refers to the case where the blur
kernel k and noise level in Eqn. 1.3 are known or estimated prior to
the image restoration process. Most non-blind methods assume that
there is no additional source of blur in LR image formation, and only
model bicubic anti-alias filtering. Hence, Eqn. 1.3 simplifies as

y = (x) ↓ +v (1.4)

Blind image restoration and SR refers to the case where the blur
kernel k and noise level in Eqn. 1.3 are unknown and must be estimated
simultaneously with the image restoration and SR process.

1.2 Model-based Regularization of Ill-Posed Inverse Problems

Since the forward model (1.1) or (1.2) is in general not invertible,
one can possibly define the ordinary least squares estimate of x or
the pseudo-inverse solution given by

x̂ = (HTH)−1HTy (1.5)

However, this solution is not regularized in the sense that it is highly
sensitive to small perturbations (noise) in the observation vector y.
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Finding a solution that is well-behaved in the presence of observa-
tion noise is impossible without utilizing some prior information about
the ideal signal/image x. This is called regularization of the inverse
solution. Traditional model-based regularized inversion methods mini-
mize a cost function subject to some constraints (prior) on the solution.
Assuming the observation noise is additive, white Gaussian, and is
independent of the signal/image x, the regularized inverse solution can
be found as

x̂(λ) = argx min
1
2 ||y−DHx||2 + λR(x) (1.6)

where R(x) is a regularization operator that imposes some prior on x.
Hence, the solution is the minimizer of a data-consistency cost term,
which measures how well the restored image matches the observations
given the degradation model, and a regularizer term, which imposes
some prior knowledge or promotes images with some desirable property.

One of the first regularization methods is Tikhonov regularization,
which, in the case D=I, is given by (Tikhonov and Arsenin, 1977)

x̂(λ) = (HTH + λLTL)−1HTy (1.7)

where L is a linear regularization operator expressed in matrix form and
λ is a parameter that controls the tradeoff between data consistency and
regularization, i.e., noise sensitivity. For example, L can be the Laplacian
operator that estimates high frequency image components. In this case,
minimizing the energy of high frequency image components can be
viewed as imposing a smoothness constraint as an image prior.

Direct computation of (1.7) requires inversion of the large matrix
(HTH+λLTL). There are two common approaches to avoid inversion of
this large matrix: i) employing an iterative solution, ii) diagonalization
using the discrete Fourier transform assuming the matrix is circulant.
Under certain assumptions, this regularized inverse solution can be
obtained by a linear, shift-invariant regularized inverse filter.
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1.3 Limitations of Linear Shift-invariant Regularized Inverse Filters

Let’s express the observation model (1.2), in the case D=I, in scalar
form as a convolution

y(n1, n2) = h(n1, n2) ∗ ∗x(n1, n2) + v(n1, n2) (1.8)

Taking the 2-D discrete Fourier transform of both sides, we obtain

Y (ejω1 , ejω2) = H(ejω1 , ejω2)X(ejω1 , ejω2) + V (ejω1 , ejω2) (1.9)

If we process the observed image by a linear, shift-invariant restoration
filter Φ(ejω1 , ejω2), the estimated image can be expressed as

X̂(ejω1 , ejω2) = Φ(ejω1 , ejω2)Y (ejω1 , ejω2) (1.10)

If we now substitute Eqn. 1.9 for Y (ejω1 , ejω2), we get

X̂(ejω1 , ejω2) = Φ(ejω1 , ejω2)[H(ejω1 , ejω2)X(ejω1 , ejω2) +V (ejω1 , ejω2)]
(1.11)

In order to analyze the artifacts due to processing with a linear,
shift-invariant filter Φ(ejω1 , ejω2), we add and subtract X(ejω1 , ejω2)
to the right hand side to obtain (Tekalp and Sezan, 1990):

X̂(ejω1 , ejω2) = X(ejω1 , ejω2)
+[Φ(ejω1 , ejω2)H(ejω1 , ejω2)− 1]X(ejω1 , ejω2)
+Φ(ejω1 , ejω2)V (ejω1 , ejω2) (1.12)

The second term at the right-hand side is signal-dependent regularization
error (ringing artifacts). The third term is filtered noise artifacts. If
we let Φ(ejω1 , ejω2) = H−1(ejω1 , ejω2) (inverse filter) then the second
term disappears, but the third term dominates and masks the signal
x(n1, n2). Hence, the trade-off between the last two terms is a theoretical
limitation of LSI regularized solutions (Tekalp and Sezan, 1990).

In order to overcome this theoretical limitation of LSI inverse filters,
many adaptive or nonlinear methods have been proposed within the past
30 years. They are briefly discussed in the next section.
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1.4 Nonlinear Model-based vs. Data-driven Approaches

Traditional nonlinear model-based regularized inversion methods have
been applied to solve image/video restoration and SR problems for over
50 years. We can broadly classify available solutions as: i) iterative meth-
ods that impose deterministic constraints or priors about the ideal image,
ii) methods based on statistical estimation theory, and iii) example-
based methods based on machine learning (but not end-to-end deep
learning). Examples of such methods include maximum a posteriori
probability (MAP) estimation, sparse modeling (Papyan et al., 2018),
adaptive filters (Erdogmus and Principe, 2006), and example-based
machine learning (Freeman et al., 2002; Liu et al., 2007).

Iterative methods can be used to impose constraints on the solution.
Early iterative regularization methods include nonlinear Landweber iter-
ations, iterative back-projection, or projection onto convex sets (POCS)
methods. Iterative solutions to variational optimization formulations,
such as the total variation (TV) regularization, have also been proposed.
TV regularization suppresses oscillations (noise) in the solution while
allowing for discontinuities (edges). Later, iterative solutions based
on sparse and redundant image representation have become popular.
Sparse redundant representations constrain the signal to the form

x = Aγ (1.13)

where x ∈ Rn, γ ∈ Rm such that m > n, and the n × m matrix A
is a dictionary of atoms. The vector γ is sparse with only few (say k)
nonzero elements; thus, x is constrained to be a linear combination of
k atoms from a learned dictionary A.

Statistical estimation methods pose image/video restoration and SR
as finding the minimum mean square error (MMSE) estimate, given by

x̂MMSE = argx̂ min E{(x− x̂)2} (1.14)

or the maximum a posteriori probability (MAP) estimate, given by

x̂MAP = argx min ln p(x|y) = argx min (ln p(y|x) + ln p(x)) (1.15)

Note that when the distributions are Gaussian, the first and second
terms in Eqn. (1.15) correspond to those in Eqn. (1.6).
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Example-based learning have also been shown to yield good results.
Nevertheless, classical model-based solutions require iterations (more
computation) during inference and their performance is limited since
single-image SR is a severely ill-posed inverse problem.

The latest advance in the state-of-the-art in nonlinear image/video
restoration and SR is based on deep learning driven by big data. It only
became possible to obtain deep learned SR results that are superior to
those of traditional model-based approaches within the last 5-6 years
leveraging the recent advances in deep neural network architectures
and training methods including optimizers, wide availability of large
datasets, and powerful GPU computing.

Learned image restoration and SR tasks can be posed as a nonlinear
regression problem or a generative modeling problem. We can gain
insight on how deep learning helps to achieve state of the art image
restoration and SR results leveraging data-driven regression paradigm by
means of the following example. Suppose we want to predict the weight
of a person given his/her height and age. Given a dataset with weight,
height and ages of people, we can fit a surface in 3-D to given data. If we
fit a linear model, this would be a plane in 3-D as depicted in Figure 1.1.
A nonlinear regression framework would allow fitting an arbitrary 3-D
surface to the given data. Given the height and age of a new person not
in the training dataset, we can project the height and age to the 3-D
prediction surface to get a reading of the predicted weight. The shape of

Figure 1.1: Illustration of linear regression in a 3-dimensional space.
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the 3-D surface, which determines the accuracy of the predicted weight,
depends on the form of the nonlinear predictor, the loss function used
in fitting, and of course the goodness of the available training data.

Regressive inference for learned image restoration and SR works
similarly, where we have input (LR) and output (HR) image pairs. Each
corresponding LR-HR image pair is represented by a point in a very high
dimensional space (each pixel is a dimension). For example, if we have
100 × 100 patches, that would constitute a 10,000 dimensional space.
A deep learning model defines a prediction manifold that is fitted to
these sample points in the very high-dimensional space. In analogy with
the above example, the accuracy of the predicted HR images depends
on the architecture of the neural network (the form of the predictor),
the optimization criterion, and the available datasets.

Alternatively, generative inference works by first learning a model
to represent the distribution of the ideal image conditioned on a given
degraded image, and then sampling one or more plausible solutions
from this distribution during inference.

The inference process in model-based methods and learned methods
are in stark contrast. In traditional model-based methods, there is no
training process, but we need to solve a different optimization problem
for each test image. While this requires significantly more computation
during inference, it provides flexibility to use a different degradation
model for each test image. In learned methods, we typically assume all
training and test images are subject to the same degradation process,
and the training step requires significant computation, but the inference
process is very fast. Hence, classical model-based and deep learning
approaches have different strengths and weaknesses.

1.5 Three Pillars of Learned Image Restoration and SR

The three pillars of learned image restoration and SR are the network
architecture, the optimization criteria, and training methodology and
data. We provide a brief introduction to each of these pillars, depicted
in Figure 1.2, in the following subsections.
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Figure 1.2: Three pillars of learned image restoration and SR.

1.5.1 Network Architectures: Regressive vs. Generative Models

In a very broad way, we can classify deep SR network architectures
as regressive models and generative models. Regressive models are
feedforward networks that learn a nonlinear mapping from the space of
LR images to the space of HR images. They include residual networks,
dense networks, and their variations. On the other hand, generative
models learn the probability distribution of HR images conditioned on
LR images. Thus, generative SR models enable sampling one or more
HR images from the estimated conditional distribution of HR images.
We provide an overview of recent advances in deep neural network
architectures that contribute to achieving the state-of-the-art results in
image/video restoration and SR in Chapter 2.

1.5.2 Optimization Criteria: Distortion vs. Perception

Unlike classical model-based methods, that optimize either l2 or l1 dis-
tortion subject to some regularization prior, learned image restoration
and SR allows optimization with respect to any differentiable loss func-
tion. Parameters of the network can be optimized purely for distortion
(fidelity) or a combination of fidelity and perceptual criteria. Blau and
Michaeli, 2018 show that distortion and perceptual quality are at odds
with each other leading to perception-distortion tradeoff. Specifically,
they study the optimal probability for correctly discriminating the out-
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puts of an image restoration algorithm from real images and show that
as the mean distortion decreases, this probability increases indicating
worse perceptual quality. Achieving the best trade-off between highest
fidelity and perceptual quality is an interesting research problem. Fi-
delity and perceptual optimization criteria and perception-distortion
tradeoff are reviewed in more detail in Chapter 3.

1.5.3 Training Methods and Data: Supervised vs. Unsupervised

A vast majority of published literature on learned image restoration and
SR perform supervised training from a synthetically generated LR, HR
paired image dataset. This dataset depends on a particular blur kernel
and noise level that is used to generate LR images from corresponding
HR images. SR models obtained this way perform incredibly well,
outperforming conventional model-based methods by a large margin,
when the test set of images are also generated using the same degradation
process. However, if the degradation in the test set of images differ from
those in the training set, then SR performance deteriorates. We call
this dependence of SR performance on the degradation model used in
the training set as model overfitting.

When it comes to real-world problems, this approach of training SR
models based on synthetically generated LR-HR image pairs is of limited
use due to model overfitting, because real LR images are degraded by
blur and noise, which are unknown in the practical setting. Furthermore,
in the real-world SR setting, there is no ground-truth; hence there is no
paired data available for training. Hence, in the real-world setting we
have blind image restoration/SR problem without ground-truth data.

Recently, more researchers have started working on blind image
restoration/SR methods that require no training, or can be trained
without an external training set, or can be trained by unpaired datasets.
These methods can be classified as: i) two-step approaches, where
the blur kernel is estimated first and then used in a non-blind SR model,
or ii) methods that iteratively correct the blur kernel estimate based
on the LR image and the most recent estimate of the SR image. Both
supervised and unsupevised training of image and video SR models are
discussed in Chapter 4 and Chapter 5, respectively.



1.6. Related Recent Survey Articles 13

1.6 Related Recent Survey Articles

Other survey articles have appeared in the literature while we are
working on this manuscript. Some of them introduce a taxonomy for
deep learned SR models grouping them into categories, some benchmark
SR algorithms, and some are in preprint.

Wang et al., 2021 provide a nice overview of the SISR literature;
however, their paper does not cover transformer-based architectures,
and touches upon video SR and real-world SR issues very briefly.

In deep journey into SR (Anwar et al., 2021), the authors introduce
a new taxonomy of the SR algorithms based on their architectures. They
also provide a systematic evaluation of more than 30 SISR algorithms
on six publicly available datasets given LR-HR image pairs. However,
the assessment of results was only performed in terms of PSNR and
SSIM; they do not discuss perception-distortion tradeoff, and they do
not address real-world SR or video SR.

Liu et al., 2020 propose a taxonomy and classify video SR methods
into six sub-categories according to the ways they utilize inter-frame
information in a preprint article. They also compare more than 30 video
SR algorithms. Blind image SR (Liu et al., 2021a) is another preprint
article that surveys image SR methods that can deal with an unknown
degradation. The authors propose a taxonomy to categorize existing
methods into three different classes according to the ways they model
the degradation process.

Unlike these surveys, we do not benchmark a set of algorithms or
propose a new taxonomy, but we focus on the understanding of founda-
tional ideas and provide a comprehensive overview of basic principles
of regressive (predictive) and generative SR network architectures, ap-
proaches to enforce temporal consistency in video SR, full-reference
and no-reference image/video quality assessment (QA) measures, and
differentiable QA measures that can be used as optimization loss func-
tions. We also discuss the real-world SR problem and survey how to
deal with the cases of known degradation model and blind SR as well as
unsupervised learning approaches for real-world SR in detail. We believe
this article can be used as reference material in an advanced image
processing class.



2
Modern Network Architectures

This chapter reviews recent advances in deep neural network archi-
tectures that led to significant performance improvements in learned
image restoration and SR. Section 2.1 introduces convolutional net-
works (ConvNet), and discusses ConvNet architectures that are more
easily trainable and have more expressive power. Section 2.2 presents
self-organizing neural networks that learn the best nonlinearity for
the task at hand. Section 2.3 introduces self-attention mechanism and
visual transformers. Finally, Section 2.4 discusses the differences between
regressive and generative neural models.

The origin of today’s deep neural networks can be traced back to
the binary neuron model (McCulloch and Pitts, 1943) and its exten-
sion to the perceptron (Rosenblatt, 1958). The McCulloch-Pitts neuron
only allowed for binary inputs (with no weighting) and outputs, us-
ing the threshold step activation function. Later, Rosenblatt modified
this binary neuron to the perceptron, which weighs different inputs with
"learnable" coefficients, while still using the binary threshold (the Heavi-
side step function) activation. Limitations of the perceptron model was
pointed out by (Minsky and Papert, 1969). In particular, they showed
the perceptron could not implement the XOR and NXOR functions and

14
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it could only classify linearly separable classes. As a result, few people
continued to work in the area until the 1980’s.

These difficulties were resolved by the multi-layer perceptron (MLP),
which is a neural network consisting of multiple layers of perceptrons.
Hornik et al., 1989 have proven that MLPs are universal approximators.
An MLP has an input layer, at least one hidden layer, and an output
layer. Let’s assume a particular layer of MLP has N input neurons
(perceptrons) corresponding to N = N1 ×N2 pixels with K1 channels
represented by N ×K1 matrix x and M outputs each with K2 channels
denoted by theM×K2 matrix y. For each output channel k = 1, · · · ,K2,
we first compute an affine combination z of inputs

zk = Wkx + bk (2.1)

where Wk is a tensor of weights with the shapeM×N×K1 for channel k
of the layer, bk is an M ×1 bias vector. If the network is fully-connected,
then the matrix Wk is fully populated. The output yk for channel k of
the layer is a nonlinear pointwise function f(·) of zk given by

yk = f(zk) (2.2)

The function f(·) is called an activation. The elements of tensor Wk

and vector bk are learnable parameters. End-to-end training of MLPs
was made possible by the introduction of the back propagation algo-
rithm (Rumelhart et al., 1986). However, if we do not impose a structure
on the tensor Wk, then there are an enormous number of parameters for
a typical image processing problem, which makes training impractical.

It is interesting to note that the first GPU implementation of an
MLP, which resulted in a speed up by a factor of 20 compared to CPU
implementation, was proposed by Oh and Jung, 2004.

2.1 Convolutional Networks (ConvNet)

2.1.1 Early ConvNets

The first neural network, which imposed a structure on the tensor W
was the neocognitron (Fukushima, 1980) that was proposed for hand-
written character recognition using simple and complex cells. The simple
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cells perform a convolution and complex cells perform average pooling.
However, the backpropagation algorithm was not known at the time,
and success of the method was limited due to difficulty of training it.

Gradient based learning using the backpropagation algorithm to
train a neocognitron-like architecture, called LeNet-5, for handwritten
character and zip code recognition was first demonstrated by LeCun et
al., 1989. LeNet-5 architecture consists of an input layer, 2 convolutional
layers with 5 × 5 kernels, 2 subsampling layers and 2 fully connected
layers. The input layer takes 28 × 28 images and pads them to 32 × 32.
The first convolutional layer outputs 6 feature channels 28 × 28 each,
which are then subsampled to 14 × 14. The second convolutional layer
outputs 16 channels 10 × 10 each, which are then subsampled to 5 × 5.
Classification of these features is performed by 2 fully connected layers.

There are two factors that lead to reduction of the number of param-
eters in ConvNets: i) The tensor W consists of sparse blocks meaning
neurons are connected only to their local neighbors (i.e., finite impulse
response filtering), which is motivated by the fact that correlations in
natural images are confined to local neighborhoods. ii) Parameter shar-
ing across neurons, which means all sparse blocks in W have the same
parameters, assuming that texture in natural images is homogeneous.
Combining "sparsity" and "parameter sharing" constraints on W, matrix
multiplication in (2.1) can be implemented by convolutional filtering.

Figure 2.1: Illustration of a convolutional layer with 3 input and K output channels.
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Implementation of a convolutional layer with three input channels
and K output channels is illustrated in Figure 2.1. We have K convolu-
tions with the filters h1, · · · , hK , where the impulse response (kernel)
of each filter is L1 × L2 × 3. We denote a convolutional layer with K1
input channels, L1 × L2 kernel for each input channel, and K2 output
channels with the notation "K1, L1 × L2,K2"

We note that although each convolution layer has a small receptive
field, e.g., 3×3 pixels using a 3×3 kernel, as we stack multiple convolution
layers, the receptive field of later layers grows, e.g.,stacking 2 layers
with 3× 3 kernels, we get a 5× 5 receptive field, and so on.

Following the work of Oh and Jung, 2004, several GPU imple-
mentations of ConvNets were proposed (Chellapilla et al., 2006; Cire-
san et al., 2011; Krizhevsky et al., 2012) for different image process-
ing and computer vision applications. Among these, the success of
AlexNet (Krizhevsky et al., 2012) in the ImageNet Large Scale Visual
Recognition Challenge 2012 has made a significant impact in ConvNets
gaining popularity in the image processing/computer vision community.

2.1.2 Residual Networks (ResNet)

Early ConvNets, such as LeNet-5 (LeCun et al., 1989), DanNet (Ciresan
et al., 2011), AlexNet (Krizhevsky et al., 2012), were not very deep
because it was observed that as we stack more and more layers, both
the test and training performances of networks do not improve but
rather first saturate and then start to degrade. The main reason for this
phenomenon is the vanishing/exploding gradients problem. While nor-
malizing inputs and intermediate layer outputs alleviates this problem
for networks with 10-20 layers, it does not help with deeper networks.

The motivation for residual networks (He et al., 2016a) is as follows:
Consider two networks, one with L layers and a deeper network with
M > L layers. We expect the deeper network to perform at least as
well as the shallower network. Clearly, the deeper model could achieve
the performance of shallower model by replacing the first L layers of
the deep network with the trained layers of the shallower network, and
the remaining M − L layers with an identity mapping. But this does
not happen in practice. Residual networks address this problem.
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We note that highway networks (Srivastava et al., 2015), which
feature shortcut connections with learnable gating functions, were con-
currently proposed to address issues with training very deep networks.

Residual Blocks

ResNet is composed of residual blocks, where each residual block fea-
tures a skip (or shortcut) connection to allow implementation of an
identity mapping. Formally, a residual blocks approximates a nonlinear
mapping H(x) = F (x) + x, where the second term (identity mapping)
is implemented by a short-cut connection as depicted in Figure 2.2.

The original residual block design (He et al., 2016b) is depicted
in Figure 2.2(a). When multiple residual blocks are stacked together to
form deeper networks, the gradients can flow directly through the skip
connections backwards from later to initial filters to overcome the van-
ishing gradients problem. However, it was observed that the performance
of a thousand layer ResNet is still worse than a hundred-layer ResNet.
After testing different combinations, it was shown the configuration
batchnorm-RELU-convolution depicted in Figure 2.2(b), called full pre-
activation residual block, can alleviate the vanishing gradients problem
better. ResNet formed by such blocks is referred to as pre-ResNet.

(a)

(b)
Figure 2.2: Illustration of residual block: (a) original, (b) full pre-activation.
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Figure 2.3: Illustration of residual networks of residual networks. The first convolu-
tion layer generates the desired number of feature channels from the input image.
The last convolution layer generates the output image from the feature channels.

Residual Networks of Residual Networks

Many variants of the original ResNet have been proposed for improved
performance. Among them, multi-level residual networks (Zhang et al.,
2018c), also known as residual networks of residual networks (RoR), is
based on the hypothesis that the residual mapping of residual mapping
is easier to learn than the original residual mapping. In particular, RoR
adds level-wise shortcut connections upon original residual networks to
improve the learning capability of the overall network. An example of
RoR networks is depicted in Figure 2.3, where short-skip connections
have been added as another level of skip connections for every three
regular residual blocks. ResNet variants are among the most popular
architectures used for image processing and computer vision tasks.

2.1.3 Densely Connected Networks (DenseNet)

A DenseNet is a type of ConvNet, which consists of multiple dense
blocks that utilize dense connections between layers, where the output of
a layer is concatenated to inputs of all later layers with matching feature-
channel sizes. Whereas a traditional convolutional network with L layers
have L connections, one between each layer and its subsequent layer,
a DenseNet with L layers has L(L+ 1)/2 direct connections between
layers. Since different layers have different receptive fields, this allows
for a multi-resolution representation of feature channels.
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Dense Blocks

A dense block is composed of multiple dense layers that concatenates
the output of a layer to the inputs of all later layers with matching
feature-map sizes. For each dense layer, the feature-maps of all preceding
dense layers are used as inputs. The composition of a dense layer
and a dense block are depicted in Figure 2.4(a) and (b), respectively.
Figure 2.4(a) shows a dense layer with 64 channel input and 96 channel
output, i.e., with the growth rate 32 channels. Note that the layer
generates 32 new feature channels and concatenates them with the 64
input channels. The dense block shown in Figure 2.4(b) has 4 such
dense layers, where each dense layer generates 32 new feature channels
for a total of 192 feature channels at the output of the dense block.

A dense block differs from a residual block in the following ways:
i) the number of feature channels in the input and output of a residual
block are the same, whereas the output of a dense block has more
channels than its input, ii) the input and output of a residual block are
combined by addition, whereas the input and output of a dense block
are combined by concatenation, iii) a residual block passes its outputs
to only the next residual block as input, whereas a dense block passes
its outputs to all later dense blocks as inputs.

(a)

(b)
Figure 2.4: Illustration of (a) dense layer, (b) dense block with 4 dense layers.
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Figure 2.5: Illustration of a residual dense block.

Residual Dense Blocks

A residual dense block (Huang et al., 2017) combines the best features
of a residual block and a dense block. Its architecture is depicted in
Figure 2.5. The output of each convolutional layer is concatenated with
the outputs of previous layers. The 1 × 1 convolution layer reduces
the number of output channels of the upper branch down to the number
of input channels. This is because of the addition of the output of
the upper branch with the input passed through the short-cut connection.
Hence, the input and output of a residual dense block have the same
number of feature channels.

Residual-in-Residual Dense Blocks (RRDB)

Inspired by the architecture of residual networks of residual networks,
the residual-in-residual dense block (RRDB) (Wang et al., 2018b) ex-
tends the residual dense block architecture with multiple levels of
short-cuts for improved performance. The RRDB block is comprised
of three residual dense blocks (RDBs) stacked back to back and an
end-to-end shortcut as depicted in Figure 2.6.

Figure 2.6: Illustration of a residual-in-residual dense block (RRDB).
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2.2 Generative Neurons and Self-organized Residual Blocks

Various forms of ConvNets discussed so far are all built by stacking
multiple layers of multi-channel perceptron neurons with sparse weight
tensors. Perceptrons are limited in their expressive power because they
employ linear combination of inputs. The only nonlinearity is the point-
wise nonlinearity of the activation function. Recently, operational neural
networks (ONN) and self-organized ONNs (Self-ONN) based on new
generalized neuron models have been proposed (Kiranyaz et al., 2021).

ONNs employ the generalized operational perceptrons (GOP) as
their basic neuron model. A GOP is formed by a particular set of
nodal, pool and activation operators from a pre-determined operator
set library. The classical perceptron is a special case, where the nodal,
pool and activation operators are multiplication, addition, and RELU,
respectively. An optimal operator set per network layer can iteratively be
searched during several short back-propagation (BP) training sessions.

A Self-ONN layer is formed by more expressive generative neurons,
which are explained in detail in Section 2.2.1. They can learn to approx-
imate any nonlinear function, without the limitation of an operator set
library and are computationally more efficient. It has been shown that
Self-ONNs can learn highly complex and multi-modal functions using
few layers of generative neurons with minimal network complexity and
training data because generative neurons have superior expressive power.
While generative neurons can be employed to replace the perceptrons
in any ConvNet architecture that is discussed above, the fact that Self-
ONNs with few layers have excellent expressive power reduces the need
for very deep networks; hence, the need for more complex architectures
such as residual networks of residual networks and residual-in-residual
dense blocks.

2.2.1 Generative Neurons

A generative neuron approximates a non-linear function f(x) by a
Taylor series expansion

f(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n (2.3)
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Figure 2.7: Illustration of a one-channel generative neuron for q = 3.

around the point a. If we truncate the series to q terms, we have an
approximation g(w, x, a) given by

g(w, x, a) = w0 + w1(x− a) + · · ·+ wq(x− a)q (2.4)

where
wn = f (n)(a)

n! . (2.5)

For a c-channel input tensor, the parameters wn, n = 1, . . . , q denote q
banks of c-channel convolution kernels and w0 denotes a bias. These
parameters can be learned by the classical back-propagation algorithm.

A generative neuron with 3× 3 kernels, a = 0, q = 3, and activation
function σ() is illustrated in Figure 2.7. Each neuron takes c-channels
as input and outputs a single channel. The activation function limits
outputs within a range about the value a before they are input to
the next neuron, since the Taylor series is expanded around a. So, for
a = 0.5, σ() can be taken as sigmoid that bounds the output in the
range [0 1], or if a = 0, σ() can be tanh(x) to bound the outputs in
the range [−1 1]. Note that if we choose q = 1 and a = 0, the generative
neuron model reduces to the classic convolutional perceptron.

2.2.2 Self-Organized Residual Blocks

A self-organized residual (SOR) block can be obtained by replacing all
regular convolutional layers in a residual block with self-organized layers
(SOL) formed by generative neurons without the activation function σ().
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Figure 2.8: Illustration of SOR block (Keleş et al., 2021a), where SOL stands for a
layer formed by generative neurons without an activation function.

Figure 2.8 depicts a SOR block consisting of SOL, activation layer, and
SOL, where we define the activation function σ() as a separate layer,
and another activation layer after the summation with the short-cut
connection to soft-limit the output of the SOR block.

Using SOR blocks in place of regular convolutional residual blocks,
any ConvNet architecture with residual blocks can be transformed into a
self-organized residual network. The main advantage of SOR blocks over
standard residual blocks is that we can obtain better performance with
a fewer number of blocks, eliminating the need for very deep networks.

2.3 Self-Attention and Visual Transformers

The strong inductive bias of ConvNets has been the main motivation
for adopting them as the backbone for image processing tasks. However,
convolutions are not effective in capturing long range correlations in
images because of their limited receptive fields. Given the improvements
that can be obtained by non-local image processing, e.g. by using non-
local means (Buades et al., 2005), and the success of self-attention to
effectively exploit long range interactions in sequence modeling tasks,
there is growing interest in using self-attention layers either to augment
ConvNets or as stand-alone primitives for image processing tasks.

We note that the objective and scope of self-attention layer is
different from those of scaling attention mechanisms, such as channel-
wise attention and spatial attention, which simply scale feature maps.
Self-attention aims to capture long range interactions, and is defined as
attention applied to a single context instead of across multiple contexts,
i.e., the query, keys, and values are all extracted from the same content.
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2.3.1 Global vs. Local Self-Attention

Global self-attention can be viewed as a form of non-local means (Buades
et al., 2005), which is a powerful tool in classical image/video processing.
Non-local neural networks (Wang et al., 2018a) relates self-attention
to the more general class of non-local filtering operations in image and
video processing. The proposed non-local module, an adaptation of
dot-product attention, demonstrates significant improvements in several
computer vision and image processing tasks. Attention augmented
convolutional networks (Bello et al., 2019) propose combining both
convolutions and self-attention by concatenating convolutional feature
maps with feature maps produced via self-attention. Experiments show
that attention augmentation leads to consistent improvements in image
classification and object detection across different models and scales.

We note that the memory requirement and computational complexity
of global dependency modeling by dot-product attention is quadratic
in image size. This prohibits its application to high-resolution images
and large videos. In many applications, input images to self-attention
layers need are downsampled for computational feasibility. Recently,
an efficient implementation of self-attention with linear complexity has
been proposed (Shen et al., 2021). When scaling normalization is used,
the efficient attention mechanism is mathematically equivalent to dot-
product attention. On the other hand, when softmax normalization is
used, the two mechanisms are approximately equivalent.

While above works show augmenting convolutional models with
global self-attention achieves gains on different vision tasks, others
investigate whether local self-attention can be used as a stand-alone
primitive for vision models. Hu et al., 2019 introduce a form of pixel-
wise sliding window self-attention as a new image feature extractor,
called the local relation layer, that adaptively determines aggregation
weights based on the compositional relationship of local pixel pairs.
Ramachandran et al., 2019 propose a fully self-attentional model by
replacing all instances of spatial convolutions in the ResNet with local
relative self-attention. Their model outperforms the baseline on Ima-
geNet classification with 12% fewer FLOPS and 29% fewer parameters.
Ablation study shows self-attention has more impact at later layers.
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2.3.2 Vision Transformers

Vision Transformer (ViT) (Dosovitskiy et al., 2021) is an encoder
network, with multiple layers of multi-head self-attention, which takes
flattened image patches as inputs and treats them the same way as
tokens (words) in an NLP application. A summary of the operation
of ViT is as follows: i) Split an image into non-overlapping patches;
ii) Flatten the patches into vectors; iii) Produce lower-dimensional linear
embeddings from the flattened patches; iv) Add positional embeddings;
v) Feed the sequence as an input to a standard transformer encoder;
vi) Perform fully supervised pretraining of the model on a huge dataset;
vii) Finetune the model on the smaller application dataset. A key
insight of this work is that, like transformer models in NLP, ViT needs
a sufficient amount of labelled training data to realize its potential.

ViT for dense prediction (Ranftl et al., 2021) is an encoder-decoder
network that uses ViT (Dosovitskiy et al., 2021) as a backbone encoder.
They reassemble the bag-of-tokens representation that is provided by
ViT into image-like feature representations at various resolutions and
progressively combine the feature representations into the final dense
prediction using a convolutional decoder. Unlike fully-convolutional
networks, the ViT backbone does not perform explicit downsampling
after an initial image embedding has been computed; hence, it main-
tains a representation, which has constant dimensionality and a global
receptive field throughout all stages.

Unlike ViT that produces feature maps of a single low resolution
and have quadratic computation complexity in input image size due
to computing self-attention globally, Shifted windows (Swin) Trans-
former (Liu et al., 2021b) proposes a hierarchical representation with
shifted windows at various scales. The shifted windowing scheme has
linear computational complexity with respect to image size due to com-
puting self attention over non-overlapping local windows, while also
allowing for cross-window connections. The shift and scale variables of
the Swin transformer representation resembles the same properties of
the wavelet transform.

Swin Transformer V2 (Liu et al., 2022) addresses difficulties with
scaling up model capacity and input image resolution of the original
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model. The authors observe instability issues in training large models.
In addition, effective transfer of models pre-trained at low resolution to
higher resolution images requires some modifications. Another problem
is the GPU memory consumption when the image resolution is high.
To address these issues, the authors propose: 1) a post normalization
technique and a scaled cosine attention approach to improve stability
of training large vision models; 2) a log-spaced continuous position bias
technique to effectively transfer models pre-trained with low-resolution
images and windows to their higher-resolution counterparts. In addition,
they also share important implementation details that lead to significant
savings of GPU memory consumption and thus make it feasible to train
large vision models with regular GPUs.

2.4 Regressive Models vs. Generative Models

From a deterministic perspective, multi-layer feedforward networks
learn to approximate any continuous nonlinear mapping between two
spaces by a composition of simpler functions (affine maps). Universal
approximation theorem (UAT) (Hornik et al., 1989) states that multi-
layer neural networks can represent a wide variety of nonlinear functions
with desired accuracy when given appropriate weights. Note that UAT
is an existence theorem, i.e., it does not provide a construction for
the weights. Finding a set of good weights is the subject of appropriate
training procedures. In the particular case of image restoration and SR
problem, feedforward networks learn a nonlinear regressive mapping
from the space of LR images to the space of HR images.

Alternatively, from a probabilistic perspective, we can consider
the observed data, S, as a finite set of samples from an underlying
distribution, pS(s). Real world images are highly structured and are
contained in a low dimensional manifold of a very high dimensional space.
Recall that a 100 × 100 image patch is a point in 10,000 dimensional
space. Discovering the underlying structure of this low-dimensional
manifold is key to learning generative models. The goal of a generative
model is to learn the data distribution pS(s) given the dataset S.
We would be seeking a parametric approximation to the actual data
distribution, which minimizes some notion of distance between the model
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distribution and the actual data distribution. In the particular case of
image restoration and SR problem, we would be learning the distribution
of HR images conditioned on given LR images. Then, an estimate of
the SR image is computed by sampling from this learned distribution
conditioned on the given LR image. Different types of generative models
include autoregressive (AR) models, variational autoencoders (VAE),
generative adversarial networks (GAN), normalizing flow (NF) models,
and diffusion models. Among these GANs and NF models are extensively
used for image restoration and SR.

GAN was proposed as a powerful framework for synthesizing natural
images with high perceptual quality (Goodfellow et al., 2014). The GAN
framework simultaneously trains two models as adversaries: a genera-
tor G and a discriminator D, where G learns to synthesize real-looking
images and D learns to estimate the probability that its input sample
is a synthetic (generated) vs. a real (ground-truth from the training
set) image. This framework corresponds to a minimax two-player game,
where G learns the distribution of training data using the outputs of D
as a penalty term added to its loss and D yields 1

2 for all inputs at
equilibrium. The entire system can be trained using backpropagation
when G and D are defined by neural networks.

NF models provide a general methodology for constructing arbitrary
probability distributions over continuous random variables. Let x be a
D-dimensional real vector, and suppose we would like to define a joint
distribution over x. The main idea is to express x as a transformation T
of a real vector z0 sampled from a simple base distribution pZ0(z0),
i.e., x = T (z0). Flow methods construct arbitrarily complex densities
by composing several simple transformations, i.e., T = TK ◦ · · · ◦ T1
and applying the change of variables formula successively. NF models
exhibit several key advantages over GAN-based generative models, such
as monotonic converge and stable training. In addition, flow-based
generative models learn to produce a diverse set of sample images,
where the diversity of solutions increases with the temperature τ of
latent variables.

We discuss the application of GAN and NF models to image SR
problem in Sections 4.4.2 and 4.4.4, respectively.



3
Optimization and Evaluation Criteria

There exist a dilemma in the evaluation of the output of image restora-
tion and SR systems: Whether the output should be as close as possible
to a pristine original (i.e., fidelity), or it should be pleasing to a human
observer (i.e., perceptual quality). In general, these two requirements
are in conflict (Blau and Michaeli, 2018). We need to choose the correct
optimization criterion for the application at hand since an optimized
system is only as good as the optimization criterion used to design it.
If the goal of restoration/SR is to recover information, e.g., whether
a number is 3 or 8, a fidelity criterion such l1 or l2 norm should be
appropriate. On the other hand, if the goal is to restore a visually
pleasing image/video, then a perceptual criterion should be used.

Traditionally, the l2 norm of pixel-wise error or the mean-square
error (MSE) has been used for both optimization and evaluation of
image processing systems. The MSE has been commonly used as an
optimization criterion (or loss function) because it leads to closed-form
linear estimators when signal and noise are independent and Gaussian
distributed. Peak-signal to noise ratio (PSNR), which is a logarithmic
function of the MSE normalized for signal dynamic range, is used as a
measure of fidelity to evaluate the results. However, it is well-known

29
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that simple measures of fidelity, such as l1 or l2 error, do not correlate
well with human evaluation of perceptual quality.

With the recent advances in deep neural networks, we can now
easily implement nonlinear (neural) signal processing algorithms that
are optimized for any desired perceptual evaluation criterion, which
is differentiable in the unknowns. Hence, the long standing goal of
perceptual image/video processing can now be realized by nonlinear
neural signal processing; i.e., by means of deep networks optimized for
perceptual criteria. This is the most promising aspect of employing
neural methods for image/video restoration and SR. Hence, the grand
challenge is to find image quality assessment (IQA) and video quality
assessment (VQA) measures that correlate well with human judgement.

The safest way of evaluating perceptual quality is to solicit the opin-
ion of human observers. However, conducting subjective evaluation
experiments is not only difficult and expensive, but also the results
cannot be incorporated into restoration/SR systems as an optimization
criterion. Hence, it is desirable to design objective measures of percep-
tual image/video quality in a way that is consistent with subjective
human evaluation. Although there exist many proposals, no universally
accepted objective measure of perceptual image quality currently exists
that can robustly evaluate images/video like humans. Various proposals
for IQA/VQA measure differ in their use of knowledge about the ref-
erence (original) image, a model of the human visual system (HVS),
and the type of distortion. Prior art include hand-coded models, which
typically fail to model the complexity of the HVS, machine learning
models that are trained on human-labeled datasets, which are specific
to distorted types and prone to human labeling errors, and more recent
deep learning models, which yield more promising results.

This chapter reviews recent advances in IQA/VQA measures. We
classify IQA measures as full-reference (FR) distortion measures, which
are reviewed in Section 3.1 and no-reference (NR) perceptual measures,
which are reviewed in Section 3.2. Section 3.3 reviews recent advances
in VQA measures. We discuss IQA measures that can be used as
optimization criteria in learned image/video restoration and SR methods
in Section 3.4. We conclude this chapter with a discussion of perception-
distortion trade-off in image/video restoration and SR in Section 3.5.
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Figure 3.1: Classification of IQA measures.

3.1 Full-Reference Image Quality Assessment Measures

The goal of a FR IQA measure is to compare two images, where one
of them is a pristine original and the other is distorted, by means
of an objective score that evaluates the degree of fidelity/similarity
or, conversely, the amount of distortion/dissimilarity between them.
FR IQA measures are classified as hand-crafted vs. deep-learned as
depicted in Figure 3.1. The simplest FR fidelity/distortion measure is
the pixel-wise lp norm that is reviewed in Section 3.1.1. We next dis-
cuss some hand-crafted perceptually-inspired FR IQA measures: Those
based on modeling the HVS are discussed in Section 3.1.2, structural
similarity index measure (SSIM) is presented in Section 3.1.3, and visual
information fidelity (VIF) is explained in Section 3.1.4. Finally, deep
learned FR IQA measures are discussed in Section 3.1.5.

3.1.1 lp Norm and PSNR

The simplest fidelity/distortion measure is the lp norm between two
image vectors xi, i = 1, · · · , N and yi, i = 1, · · · , N that are formed by
lexicographical ordering of pixels. The lp norm is defined

Dp =
(

1
N

N∑
i=1
|xi − yi|p

)1/p

(3.1)
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where N is the number of pixels. When p = 2, Dp becomes the root
mean square error (RMSE). However, it is more common to work with
the MSE given by

MSE = 1
N

N∑
i=1

(xi − yi)2 (3.2)

The PSNR is a logarithmic function of the MSE that is normalized with
respect to the dynamic range of the image. For images with L level
dynamic range, e.g., L = 255 for 8-bit images, we have

PSNR = 10 log10
L2

MSE
(3.3)

MSE/PSNR can be computed in the RGB or YCrCb (luminance-
chrominance) space. Different ways for computing the PSNR for sets of
images and video are discussed in (Keleş et al., 2021b).

The MSE defines the average energy of the difference/error im-
age/frames, which is preserved under any orthogonal (or unitary) linear
transformation, such as the Fourier transform (see Parseval’s theorem).
The MSE possesses nice properties, such as convexity, symmetry, and
differentiability, which are desirable in the context of optimization.
Minimum-MSE (MMSE) optimization problems often have closed-form
analytical solutions, and when they don’t, iterative numerical optimiza-
tion procedures are often easy to formulate, since the gradient and
the Hessian matrix of the MSE are easy to compute. The MSE is also
a desirable measure in the statistics and estimation framework (where
the sample average in Eqn. 3.2 is replaced by statistical expectation).

The limitations of MSE/PSNR as a fidelity measure are discussed in
the paper by Wang and Bovik, 2009. In summary: 1) MSE is independent
of spatial relations between pixels; i.e., if the original and distorted
image pixels are randomly shuffled in the same way, then the MSE
between them is unchanged. 2) MSE does not consider any relation
between the original and error images; i.e., for a given error image,
the MSE remains unchanged, regardless of which original image it is
added to. 3) MSE is independent of the signs of the error samples.
4) MSE assumes all pixels are equally important to image fidelity.

Many perceptual FR IQA measures, both hand-crafted and machine
learning based, have been proposed to address these limitations. They



3.1. Full-Reference Image Quality Assessment Measures 33

can be classified as HVS-based, structure-based, statistics-based, and
learning-based measures, which are reviewed in the following subsections.

3.1.2 Measures based on Modeling Human Visual System

There has been considerable progress in mathematical modeling of
the HVS in the past 50 years. Examples of HVS effects include the just
noticeable difference (JND), brightness adaptation, and spatial/temporal
masking. In a pioneering work on finding a distortion measure that is
in agreement with subjective evaluation of compressed images, Mannos
and Sakrison, 1974 expressed the sensitivity of human observers to
gray-scale errors at different spatial frequencies by means of a contrast
sensitivity function (CSF). In another influential work, Daly, 1993 pro-
posed a visible differences predictor incorporating multiple visual effects.
Traditional HVS-based models involve 1) a preprocessing step including
a point-wise nonlinear transform, simulation of eye optics by low-pass
filtering, and color space transformation, 2) a channel decomposition
step that transforms images into different spatial frequency/orientation
selective subbands, 3) an error normalization step that weighs the error
in each subband to incorporate the error-sensitivity of HVS for different
subbands and between-coefficient error contrast masking, and 4) an er-
ror pooling step that combines the errors in different subbands into a
single measure.

More recently, researchers proposed modified PSNR measures that
take HVS models into account. These modified PSNR measures have
been based on wavelet or DCT domain HVS models or by simple block-
wise weighting of MSE. Visual signal-to-noise ratio (VSNR) (Chandler
and Hemami, 2007) is a wavelet-based measure that exploits contrast de-
tection threshold property of the HVS. It is a two-stage approach, where
the first stage determines whether the distortions are below the thresh-
old of visual detection, and the second stage quantifies the distortions
that exceed the threshold. VSNR is a low-complexity measure that
appears to be competitive with other IQA algorithms. Alternatively,
Ponomarenko et al., 2007 develop a model of between-coefficient contrast
masking of DCT basis functions. For each DCT coefficient of 8x8 image
blocks, the model allows calculation of the maximal distortion that is
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not visible due to the between-coefficient masking. A modification of
the PSNR, called PSNR-HVS-M, that takes into account the calculated
between-coefficient masking and the contrast sensitivity function is
proposed. Another approach that proved effective is simple block-wise
weighting of the MSE based on spatial activity of each block, resulting
in WPSNR and XPSNR measures (Helmrich et al., 2020).

These methods are general purpose, in the sense that they do not
assume any specific distortion type or viewing conditions.

3.1.3 Structural Similarity Index Measure (SSIM)

The structural similarity index measure (SSIM) (Wang et al., 2004) is
based on the assumption that the HVS is highly adapted to extract
structural information from the viewing field and a measure of change
in structural information can provide a good approximation to per-
ceived image distortion/quality. SSIM quantifies the similarity of three
properties of local image patches, the luminance (brightness) values
l(x, y), the contrast c(x, y), and the structure s(x, y), given by

SSIM(x, y) = l(x, y)c(x, y)s(x, y) (3.4)

= 2µxµy + C1
µ2
x + µ2

y + C1
· 2σxσy + C2
σ2
x + σ2

y + C2
· σxy + C3
σxσy + C3

where µx and µy are the local sample means of x and y, and σx and σy
are the local sample standard deviations of x and y, respectively, and
σxy is the sample cross correlation of x and y after removing their means.
The constants C1, C2, and C3 are small positive values so that near-
zero sample means, variances, or correlations do not lead to numerical
instability. SSIM usually works well even if we set C1 = C2 = C3 = 0.

Multi-scale SSIM (MS-SSIM) (Wang et al., 2003) is an extension
of SSIM that incorporates image details at different resolutions to
account for the facts that the perceivability of image details depends
on the sampling density of the image and the viewing distance.

3.1.4 Visual Information Fidelity (VIF)

Natural scenes form an extremely small subspace (manifold) of the space
of all possible images. Many researchers have attempted to characterize
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this subspace of natural images by statistical modeling. Measurement
of image fidelity has also been formulated within an information com-
munication framework based on statistics of natural images, where
the transmitter involves a scene, light source(s), atmosphere conditions,
and sensing/recording devices; the channel is any transmission/storage
processing that degrade the image; and the receiver includes display
devices and the HVS (Wang and Bovik, 2009).

Sheikh et al., 2005 proposed an information-theoretic approach to
quantifying visual fidelity by means of an Information Fidelity Criterion
(IFC) derived based on natural scene statistics. Given an original and
distorted image, the visual fidelity of the distorted image can be quanti-
fied based on the amount of information it provides about the original.
The images are modeled as realizations of a mixture of marginal Gaus-
sian densities chosen for wavelet subband coefficients, and visual fidelity
is quantified based on the mutual information between the coefficients
of the original and distorted images.

Visual Information Fidelity (VIF) (Sheikh and Bovik, 2006) is an
extension of this model that assumes the reference (original) image is the
output of a stochastic source, which passes through the HVS channel and
is processed by the brain. The information content of the original image
is quantified as the mutual information between the input and output
of the HVS channel. The same information measure is then calculated
for the distorted test image. The VIF measure then computes the ratio
of these two information values calculated over wavelet subbands to
form a visual information fidelity measure that relates visual quality to
relative image information. Similar to the SSIM, the VIF measure has
been shown to perform well for a variety of suprathreshold distortions.

3.1.5 Deep-Learned FR Perceptual IQA Measures

There are some FR IQA measures that apply learning methods to hand-
crafted features computed from the reference and test images. Instead
we focus on deep learning based methods whose inputs are raw images.

DeepSim (Gao et al., 2017) is one of the first to relate perceived
image quality to similarity in a feature space. It measures local similari-
ties between the features of the reference and test images computed by
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a ConvNet model. Various pooling strategies, such as deviation pooling,
per-centile pooling, and average pooling, are then explored to integrate
the local quality indices into an overall image quality score. Learned
perceptual image patch similarity (LPIPS) (Zhang et al., 2018d) shows
that deep features, trained on supervised, self-supervised, and unsuper-
vised objectives, model low-level perceptual similarity surprisingly well,
outperforming widely-used metrics on a large-scale perceptual similarity
dataset containing various distortions and 484k human judgments.

Perceptual image-error Assessment through Pairwise Preference
(PieAPP) (Prashnani et al., 2018) is based on the observation that it is
much easier for humans to compare two given images to identify the
one that is more similar to a reference than to assign quality scores to
each. Their training dataset is formed as follows: Given two distorted
versions (A and B) of a reference image R, subjects are asked to select
the one that looks more similar to R. They store the percentage of
people who selected image A over B as the ground-truth label for this
pair, which is called the probability of preference of A over B. They train
a deep-learning model using the proposed pairwise-learning framework
to predict the preference of one distorted image over the other. They
show that perceptual error estimated by PieAPP is well-correlated with
human opinion, while also generalizing to new kinds of distortions.

In Ding et al., 2020, the authors construct an injective and differ-
entiable function that transforms images to multi-scale overcomplete
representations using a convolutional neural network. After transform-
ing the original and corrupted images, they construct the Deep image
structure and texture similarity (DISTS) measure combining two terms
over all feature maps: one that compares the spatial averages (and
thus, the texture properties) of the two images, and a second that
compares the structural details. The final distortion score is computed
as a weighted sum of these two terms, with the weights adjusted to
match human perception of image quality and invariance to resampled
texture patches. Experiments show that the optimized method explains
human perceptual scores, both on conventional image quality databases,
as well as on texture databases. The method is relatively insensitive to
geometric transformations (e.g., translation and dilation), without use
of any specialized training or data augmentation.
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NTIRE 2021 challenge on perceptual image quality assessment
(PIQA) (Gu et al., 2021) aims at benchmarking PIQA methods. Per-
ceptual image processing algorithms based on the GAN framework
produce images with more realistic textures. Hence, the training and
testing datasets in this challenge include outputs of selected perceptual
image processing algorithms and the corresponding subjective scores, in
order to develop and evaluate IQA methods on GAN-based distortions.
LPIPS, PIEAPP and DISTS measures have been chosen as baseline
in this challenge. LIPT team was the winner. They develop an image
quality transformer (IQT), introduced in (Cheon et al., 2021), that
applies a transformer architecture to the perceptual IQA task.

3.2 No-Reference Perceptual Image Quality Assessment

In real-world image restoration and SR, a ground-truth (reference) image
is not available. Hence, one needs a no-reference (NR) IQA method
to predict the perceptual quality of images without referring to an
undistorted original.

Early NR-IQA methods focused on specific known distortion types,
such as blocking and blurring, extracted distortion-specific features
based on a model of assumed distortion type, and achieved successful
results (Ferzli and Karam, 2009). Clearly, the application scope of these
methods are limited. This section focuses on generic NR-IQA with
unknown complex distortions, which is a more challenging problem.

NR-IQA methods can be classified as traditional vs. deep learned as
shown in Figure 3.1. The traditional methods derive a score on the basis
of hand-crafted features, whereas deep-learned methods take raw images
as input and generate a score based on learned features.

The methods can also be opinion-aware or opinion-unaware. The goal
of an opinion-aware IQA method is to learn to predict scores that
correlate well with human judgement of image quality. To this effect,
they depend on databases of distorted images annotated with the
average mean opinion score (MOS) or differential MOS (DMOS) of
human evaluators. Opinion-unaware methods only use natural scene
statistics of pristine (undegraded) images without any need for degraded
training images. We discuss some example approaches in the following.
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3.2.1 Opinion-Aware Traditional NR-IQA Measures

In the training stage of opinion-aware methods, hand-crafted feature
vectors are extracted from distorted images, and then, a mapping is
learned from feature space to quality scores using a regression module,
e.g., a support vector machine regressor (SVR) based on an annotated
set of training images. In the inference stage, a feature vector is extracted
from each test image, and then fed into the learned regression model to
predict the quality score. In these methods, handcrafted features are
usually selected to model natural scene statistics.

No-reference image quality assessment using visual codebook (Ye
and Doermann, 2011) extracts a visual codebook consisting of Gabor-
filter-based local features from local image patches to capture complex
statistics of a natural image. The codebook encodes statistics by quantiz-
ing the feature space and accumulating histograms of patch appearances.
Blind referenceless image spatial quality evaluator (BRISQUE) (Mittal
et al., 2012) is based on the observation that the mean and variance
normalized luminance coefficients of natural images follow a Gaussian
distribution, while the distribution of distorted images not.

These NR-IQA models do not assume any specific types of dis-
tortions; however, they do not generalize well to degradations unseen
in training samples, and hence require the types of distortions in the
inference samples to match those in the training examples. As a result,
they are not very effective to evaluate the quality of image restoration
and SR results unless they are trained on such datasets.

3.2.2 Opinion-Unaware Traditional NR-IQA Measures

Opinion-unaware NR IQA models only make use of measurable devia-
tions of statistics of a given image from statistical regularities observed
in natural images, without training on human-rated distorted images
or any exposure to distorted images. These methods are based on the
hypothesis that natural images possess statistical regularities, which
are altered in the presence of distortions (e.g., blur and noise). Hence,
perceptual quality of images are measured in terms of quantifiable devia-
tion from natural image statistics. The performance of opinion-unaware
methods can exceed that of opinion-aware ones for complex distortions.
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The Natural Image Quality Evaluator (NIQE) (Mittal et al., 2013)
constructs a ‘quality aware’ collection of statistical features based on a
simple space domain natural scene statistic (NSS) model. Specifically,
they use locally mean subtracted and contrast normalized (MSCN)
luminance and products of pairs of adjacent MSCN values as features.
These features are derived from a corpus of natural, undistorted images.
Experimental results show that the NIQE delivers performance compa-
rable to top performing NR IQA models that require training on large
databases of human opinions of distorted images.

An extension of NIQE, called the Integrated Local NIQE (IL-
NIQE) (Zhang et al., 2015), introduces three additional quality-aware
features and fits the feature vector of each patch of the test image to a
multi-variate Gaussian (MVG) model, and compute a pooling of local
quality scores instead of using a single global MVG model to describe
the whole image. This improved NIQE model captures local distortion
artifacts more comprehensively.

3.2.3 Deep-Learned NR-IQA Measures

Neural networks are very powerful nonlinear regressors that can be
trained to predict scores directly from raw images; however, training
them requires huge amounts of annotated data. Unfortunately, it is
difficult to create large annonated image quality datasets for training
neural IQA models, since annotating image quality by human observers
is extremely expensive and time-consuming. Furthermore, many of
the available datasets are for specific degradation types, e.g., for com-
pression artifacts such as blocking, ringing, etc. Deep learned NR-IQA
in the wild is still an active research problem of interest.

To address the small training dataset problem Kang et al., 2014
consider 32 × 32 patches rather than images, thereby augmenting
the number of training samples. Bianco et al., 2018 propose to use
a pre-trained network to mitigate the same problem. They fine-tune
a pre-trained model for the IQA task on a small scale IQA dataset.
The resulting SVR model, called DeepBIQ, maps features of sub-regions
of the image to IQA scores and then estimates image quality by average-
pooling the scores predicted on multiple sub-regions of the image.
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An alternative approach to address lack of large annotated IQA
datasets is to pre-train an IQA model using synthetically generated
ranked image pairs (Liu et al., 2017). While human annotated IQA
ground-truth data is difficult to obtain, it is easy to generate distorted
and undistorted image pairs from large unlabelled datasets with known
rankings. For example, various levels of blur can be applied on reference
images, where we know blurred images are of lower quality. A Siamese
Network is trained to rank given image pairs according to image quality
using such synthetically generated training sets with ground-truth
rankings by forward propagating a batch of images through the network
and backpropagating gradients derived from all pairs of images in
the batch. The parameters of the resulting RankIQA model are then
fine tuned on small image IQA datasets in order to output IQA scores.

Another strategy to tackle deep-learned IQA in the wild has been
meta learning. The underlying idea of MetaIQA (Zhua et al., 2020) is to
learn the meta-knowledge humans employ when evaluating image quality,
which generalizes well to unknown distortions. Specifically, the authors
first undertake a number of NR-IQA tasks for different distortions. Then,
meta-learning framework is adopted to learn the prior knowledge shared
in evaluating images with diversified distortions. Finally, the quality
prior model is fine-tuned on a target NR-IQA task to obtain the final IQA
model. Experimental results suggest that the meta-model learned from
synthetic distortions can be easily generalized to authentic distortions,
which is highly desired in real-world applications.

3.2.4 NR-IQA for the SR Task: Perception Index (PI)

Different measures for no-reference perceptual quality evaluation of SR
images have been proposed. One way of evaluating perceptual quality
is by means of real vs. fake analysis, where human observers evaluate
whether a test image is real or the output of an algorithm similar
to the idea underlying adversarial training (Goodfellow et al., 2016).
Then, perceptual quality can be defined as the probability of success in
such discrimination experiments, which is proportional to the distance
between the distribution of the test image and that of natural images.
Accordingly, the KL distance between the distributions of ground truth
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and reconstructed images is used as a proxy for perceptual quality to
explain the perception-distortion trade-off (Blau and Michaeli, 2018).
However, it is difficult to employ this concept as a per image perceptual
IQA measure.

Recently, Ma et al., 2017 adapted opinion-aware NR-IQA methods
to the SR task. To this effect, they conducted human subject studies
using a large set of SR images and propose an NR-IQA measure learned
from visual perceptual scores for SR images. They design three types
of low-level statistical features in both spatial and frequency domains
to characterize SR artifacts, and learn a two-stage regression model to
predict the quality scores of SR images without referring to HR ground-
truth images. Experimental results show that the proposed metric is
effective and efficient to assess the quality of SR images based on human
perception. However, human ratings of image quality can be noisy since
quality rating scales can vary from evaluator to evaluator.

The perception index (PI) was proposed as a NR perceptual quality
measure in the PIRM Challenge (Blau et al., 2018). PI combines the SR-
task specific opinion-aware NR IQA measure of (Ma et al., 2017) and
the opinion-unaware NR IQA measure NIQE (Mittal et al., 2013) as

PI = 1
2 ((10−Ma) +NIQE) (3.5)

Note that a lower PI indicates better perceptual quality. Comparison of
the correlation between PI scores and human-opinion scores on the top
10 submissions in the PIRM Challenge shows that PI is highly correlated
with the ratings of human observers (Blau et al., 2018). This provides
empirical evidence that PI can faithfully assess perceptual quality similar
to subjective evaluations. PI has also been used in other perceptual SR
Challenges including NTIRE 2020 Challenge on Perceptual Extreme
Super-Resolution (Zhang et al., 2020a).

Another learned NR-IQA measure used in SR Challenges is the
Fréchet Inception Distance (FID) score (Heusel et al., 2017), which
measures the similarity between real and fake samples by fitting a multi
variate Gaussian (MVG) model to the intermediate representation for
the real and fake samples, respectively. In the case of FID, again lower
scores indicate a better model.



42 Optimization and Evaluation Criteria

3.3 Video Quality Measures

Generic video quality assessment (VQA) methods are expected to work
across a range of distortion types. They are classified as FR VQA
methods, which assume the availability of a pristine reference video,
and NR VQA methods, which do not have access to a reference video.

A straightforward way of solving the VQA problem would be to
consider the frames of a video as images and apply IQA measures
discussed in the previous section to each frame and pool the frame level
quality scores. However, this approach completely ignores the temporal
aspect of video and any violation of temporal consistency of frames.

Videos are spatio-temporal signals, which carry both spatial and
motion information. Motion plays a very important role in human
perception of video. Hence, in VQA, we need to consider the tempo-
ral consistency of frames in addition to spatial quality of texture in
each frame. Temporal inconsistencies result in jitter, which causes low
perceptual quality even if the texture in each frame looks quite natural.

Popular traditional FRVQA methods that incorporate both spa-
tial and motion/temporal information based on optical flow include
the MOVIE index (Seshadrinathan and Bovik, 2010) and FLOSIM (Man-
asa and Channappayya, 2016). The MOVIE index quantifies the error
in the optical flow of the distorted and reference video over several
spatio-temporal frequency bands computed using spatio-temporal Ga-
bor filters. It then pools these errors to form the perceptual quality score.
FLOSIM is based on local optical flow statistics, which are shown to be
sensitive to distortions in video. The deviation of test video optical flow
statistics from those of the pristine video is quantified as the perceptual
quality score of the test video.

More recently, VQA measures that involve machine learning or
deep learning have become popular. Perhaps one of the most well-
known FR VQA measures is Video Multi-method Assessment Fusion
or VMAF (Blog, 2016), which has enjoyed popularity in the image
and video compression community, since it has been trained specifi-
cally for image/video compression applications on video samples with
compression artifacts. It has been shown that VMAF provides very
accurate scores for image and video compression tasks. In the following,
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we discuss some examples of generic VQA measures or those that have
been applied to video restoration and SR.

Chu et al., 2020 propose two new FR metrics, tOF and tLP, to
measure temporal consistency. tOF measures pixel-wise difference of
estimated optical flow, and tLP measures perceptual change in time, as

tOF = ||OF (gt−1, gt)−OF (x̂t−1, x̂t)||1 (3.6)
tLP = ||LP (gt−1, gt)− LP (x̂t−1, x̂t)||1 (3.7)

where OF denotes estimated optical flow, LP denotes the LPIPS metric,
and gt and x̂t are the ground-truth and estimated SR video, respectively.
In tLP, the behavior of the reference is also considered, as natural videos
exhibit a certain degree of change over time. In conjunction, both pixel-
wise differences and perceptual changes are crucial for quantifying
realistic temporal coherence.

An example of NR VQA is the Fréchet Video Distance (FVD) mea-
sure (Unterthiner et al., 2019). FVD builds on the principles underlying
Frechet Inception Distance (FID) (Heusel et al., 2017), which is a NR
IQA measure. The authors introduce a feature representation that cap-
tures the temporal coherence of the content of a video, in addition to
the quality of each frame. Unlike popular FR metrics such as PSNR
or the SSIM index, FVD considers a distribution over videos, thereby
avoiding the drawbacks of pixel/frame level metrics.

A recent neuroscience study (Henaff et al., 2019) hypothesizes that
the brain transforms incoming visual input streams to straighten their
temporal trajectories, enabling temporal prediction through linear ex-
trapolation. They present a neural network model of early human visual
processing, which can reproduce this perceptual straightening property.
They show that perceptual representations of frames extracted from a
natural video using their neural model follow a straight temporal trajec-
tory, whereas for unnatural video with artifacts the temporal trajectory
is not straight. Kancharla and Channappayya, 2021 presents a video
super-resolution method motivated by the perceptual straightening hy-
pothesis of the human visual system, which is discussed in Section 5.4.

NR VQA using natural spatio-temporal scene statistics (Dendi and
Channappayya, 2020) propose a video representation that is based on
a parameterized statistical model for the spatio-temporal statistics of
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mean subtracted and contrast normalized (MSCN) coefficients of natural
videos. Specifically, they propose an asymmetric generalized Gaussian
distribution (AGGD) to model the statistics of MSCN coefficients
of natural videos and their spatio-temporal Gabor bandpass filtered
outputs. They then demonstrate that the AGGD model parameters
serve as good representative features for distortion discrimination. Based
on this observation, they propose a supervised learning approach using
support vector regression (SVR) to address the NR VQA problem.

3.4 Quality Measures for Optimization of Image Processing

While the emphasis so far has been on discussing measures for evaluation
of image/video processing algorithms, another important question is
which measures are desirable optimization loss functions in learned
image processing. Clearly, IQA models that can be used as loss functions
should be continuous and differentiable and should be of low complexity.

In a recent study, Ding et al., 2021 have performed a large-scale
comparison of IQA models in terms of their use as objectives for op-
timization of image processing algorithms for denoising, deblurring,
super-resolution and compression tasks. Their findings indicate that
DISTS and LPIPS offer the best performance as loss functions for all
tasks except denoising, where optimizing for MS-SSIM yields the best
results. However, high computational complexity and lack of inter-
pretability of deep-learned FR measures may hinder their wide-spread
use, while `1 loss and MS-SSIM are still valuable for optimizing image
processing systems due to their robustness and simplicity.

3.5 Perception - Distortion Trade-off

Distortion refers to lack of accuracy or fidelity of the SR estimate
compared to the ground-truth measured by a FR image/video quality
measure. On the other hand, Blau and Michaeli, 2018 defines perceptual
quality as the visual quality of the SR estimate, regardless of its fidelity
to the ground-truth, i.e., it is the extent to which the estimate looks
like a natural image. According to this definition, perceptual quality
needs to be measured by a NR image/video quality measure.
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Perception-distortion trade-off theory (Blau and Michaeli, 2018)
claims that image restoration and SR algorithms cannot be simulta-
neously very accurate (high fidelity) and produce images that fool
observers to believe they are real (high perceptual quality), no matter
what distortion measure is used to quantify fidelity. This trade-off im-
plies that optimizing a distortion measure alone cannot lead to estimates
that cannot be distinguished from natural looking images.

Specifically, Blau and Michaeli, 2018 study the optimal probability
for correctly discriminating the outputs of an image restoration/SR
algorithm from real images. They show that as the mean distortion
decreases, this probability must increase indicating worse perceptual
quality, and that this result holds true for any distortion measure, and
is not only a problem associated with the PSNR or SSIM criteria.

Accordingly, we can classify image restoration/SR applications as
information-oriented and aesthetics-oriented applications. In applica-
tions that require extraction of information from degraded images,
reconstruction accuracy is of key importance (e.g. license-plate/hand-
written character recognition and medical imaging), where we only
care for the accuracy (fidelity) of the information that can be gathered
from images, we can optimize a distortion criteria only for the loss
function. In others, where perceptual quality may be more important,
e.g., computer games, we can go for optimization of a combination of
fidelity and perceptual quality criteria as the loss function. Generative-
adversarial networks (GANs) provide a principled way to approach
the perception-distortion trade-off in image restoration/SR problems.
We discuss methods for perceptual optimization of image and video
restoration/SR in Sections 4.4 and 5.4, respectively

In conclusion, the optimization (loss function) and evaluation criteria
for different image restoration/SR applications should differ. In general,
it is a good idea to evaluate image restoration and SR algorithms/results
by a pair of FR and NR metrics. Hence, the result can be placed on
the perception-distortion plane, for reliable assessment of both distortion
and perceptual quality, which makes comparison of algorithms/results
more meaningful and reliable.
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Deep Image Restoration and Super-resolution

This chapter addresses image restoration and SR using deep supervised
and unsupervised learning. Supervised training refers to optimizing a
single SISR model given a training set consisting of HR and LR image
pairs, where LR images are generated from the HR images assuming a
given blur kernel. This standard SISR problem setting provides the best
results, both in terms of PSNR and perceptual criteria, when the blur
kernel is known. However, it does not generalize well to the blind
SR problem setting, where the blur kernel is unknown, since image
restoration and SR problems are highly sensitive to errors in the blur
kernel. In the real-world SR setting, the blur kernel is unknown and
there is no ground-truth HR image paired with LR images; hence,
supervised training is not applicable. An overview of the learned SISR
problem settings covered in this chapter is shown in Table 4.1.

Table 4.1: Different learned SISR problem settings.

Setting Blur Kernel Training Section(s)
Standard SR Known Supervised 4.1, 4.2
Blind SR Unknown Supervised 4.3
Real-world SR Unknown Unsupervised 4.4

46
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We start with a brief history of recent advances in ConvNet architec-
tures for image restoration and SR in Section 4.1. Self-ONNs and visual
transformers for image restoration and SR are discussed in Section 4.2
and 4.3, respectively. These models have been optimized to minimize a
distortion measure. Perceptual optimization of SISR models is discussed
in Section 4.4. The problem of model overfit, i.e., overfitting image
prior and/or the blur kernel, in supervised training of SISR models
and solutions to alleviate model overfit are introduced in Section 4.5.
Section 4.6 reviews unsupervised training strategies in the real-world
SR setting. Some solutions to this setting are based on an external
training set of unpaired LR and HR images, while some others require
no training set but need to be optimized for each image independently.

4.1 A Brief History of ConvNets for Image Restoration/SR

Historically, the first work using Convnets for an image restoration task
was in the context of natural image denoising (Jain and Seung, 2008).
The network consisted of 4 hidden layers with 24 feature channels in each
layer. Each feature map was connected to 8 randomly chosen channels in
the previous layer and all convolutions were 5×5. The authors employed
a layer-by-layer training procedure based on stochastic gradient descent
to learn a nonlinear mapping to predict the restored image.

4.1.1 Early SR Network Architectures

The first end-to-end learned SR model, called SRCNN, was published
in ECCV (Dong et al., 2014) and later in a journal (Dong et al., 2016).
SRCNN network architecture was inspired by patch-based sparse coding
approaches and contained only 3 convolutional layers. The first layer
performs 9 × 9 convolutions for patch-based computation of n1 feature
channels, which emulates projecting input image patches onto an LR
dictionary of size n1. The second layer implements 1 × 1 convolutions
for cross-channel pooling and a nonlinearity to map n1 feature channels
to n2 channels. 1 × 1 convolutions were preferred in order not to
increase the receptive field and preserve the patch-based nature of the
end-to-end mapping from LR to HR space. The last layer performs
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5 × 5 convolutions to reconstruct an HR image. The input RGB LR
image was mapped into YCbCr components and only the luminance (Y)
component was fed into the SRCNN model after first upscaling it using
bicubic interpolation. The network was trained based on MSE loss and
the results were evaluated by the PSNR metric. Experimental results
show that even this simple learned model was sufficient to outperform
all state-of-the-art traditional model-based SR methods at the time.

Another important early work is the very deep SR (VDSR) net-
work (Kim et al., 2016), which proposed residual learning for the
first time. Residual learning (different from ResNet) proposes to learn
the residual (difference) between the HR image and interpolated LR
image, which is easier to learn than directly learning the HR image.

4.1.2 When to Upsample?

An important question in SR networks is when to upsample. There exist
multiple options: Pre-upsampling refers to upsampling the LR image by
a traditional interpolation filter before it is input to the SR network,
while post-upsampling refers to passing the LR image through the net-
work, whose final layer is a subpixel convolutional layer that generates
the output HR image. Alternatively, one can place the upsampling
layer anywhere before the final layer or perform progressive upsampling
by placing multiple upsampling layers with intermediate convolutional
layers when the scale factor S can be factored into integer factors.

Early approaches such as SRCNN (Dong et al., 2016) and VDSR (Kim
et al., 2016) employed pre-upsampling, which is not the best option
because it relies on the result of bicubic upsampling, as well as its high
computational complexity due to passing the upsampled image through
the network. ESPCN (Shi et al., 2016) was the first post-upsampling
approach, which introduced the sub-pixel convolution layer (also called
the pixel shuffler layer) instead of using deconvolution layer for upsam-
pling. In ESPCN, the sub-pixel convolution layer is used to reconstruct
a S · H × S ·W × C HR image from a H ×W × S2 · C LR tensor,
where H,W,C and S denote the height, width, output image channels
and scale factor, respectively, by shuffling the pixels of the tensor to
convert tensor channels into spatial dimensions of HR image. In modern
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deep networks, the pixel shuffler layer is typically used to rearrange a
H ×W × S2 ·C feature tensor into a S ·H × S ·W ×C feature tensor,
while the output HR image is formed by a separate convolution layer.

An example of progressive upsampling approach is the Laplacian
pyramid networks (LapSRN) (Lai et al., 2017), which progressively
reconstructs sub-band residuals of an HR image, where there is a
separate ground truth HR image and a corresponding loss function at
each pyramid level. While LapSRN consists of a set of cascaded sub-
networks, the network is trained in an end-to-end fashion (i.e., without
stage-wise optimization) using a robust Charbonnier loss function.

A somewhat different approach inspired by the traditional iterative
back-projection method is to design an end-to-end trainable network
architecture with iterative up- and down-sampling layers. Deep back
projection networks (DBPN) (Haris et al., 2021) propose use of such
multiple iterative up- and down-sampling layers with a feedback mecha-
nism that allows the model to have self-correcting property, rather than
learning a one-step non-linear mapping of input-to-target space.

4.1.3 SISR Architectures based on ResNet

The SR residual network (SRResNet) and its perceptually optimized
version, SR generative adversarial network (SRGAN), are proposed
by (Ledig et al., 2017). Unlike the early SR networks, SRResNet employs
residual blocks (see Section 2.1.2) that enable training deeper networks
by mitigating the vanishing gradients problem. SRResNet consists of
16 residual blocks with 64 feature channels followed by pixelshuffler
upsampling layer(s), which are optimized with respect to the MSE loss.

One of the best performing SR networks is the Enhanced Deep
Super-Resolution Network (EDSR) (Lim et al., 2017), which improves
the performance of SRResNet (Ledig et al., 2017) by removing batch
normalization layers. The block diagram of residual blocks used in EDSR
is depicted in Figure 4.1. It is experimentally shown that removing batch
normalization layers improves SR results and reduces the computational
cost of training. The EDSR architecture comes in two flavors: Baseline
EDSR consists of 16 residual blocks with 64 feature channels, whereas
the EDSR+ contains 32 residual blocks with 256 feature channels.
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Figure 4.1: Illustration of a residual block in EDSR (Lim et al., 2017).

EDSR treats all feature channels equally; hence, does not have
the ability to selectively learn high-frequency details. The deep Residual
Channel Attention Networks (RCAN) (Zhang et al., 2018e) propose a
residual in residual (RIR) structure with short and long skip connections
and a channel attention (CA) mechanism. CA layers adaptively rescale
each channel-wise feature to selectively learn high-frequency details while
passing low frequency features unmodified. The RIR structure enables
training very deep networks (e.g., over 400 layers), where the residual
group (RG) serves as the basic module and long skip connection allows
residual learning in a coarse level. Each RG module employs several
simplified residual blocks with short skip connection. The long and
short skip connections as well as the short-cuts in residual blocks ease
the flow of information during training.

4.1.4 SISR Architectures based on DenseNet

Different from the skip connections in residual blocks, dense skip con-
nections concatenate input features with the output of the layer rather
than summing them. This provides the additional benefit of a multi-
resolution feature map as feature channels from different layers have
different receptive fields. SRDenseNet (Tong et al., 2017) uses dense
blocks (see Section 2.1.3), which contain channel-wise concatenation
with short and long connections. Concatenating the outputs of several
layers results in accumulation of a large number of feature channels,
which significantly increases the model size and memory requirement.
Thus, the number of feature channels is typically reduced to 256 or less
using a convolution layer with 1×1 kernel, called a bottleneck layer, in
order to keep the model compact and improve computational efficiency.
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Residual Dense Network (RDN) for image SR (Zhang et al., 2018f)
proposes the residual dense block (RDB) with local feature fusion (LFF)
as the building module. RDBs combine the benefits of residual blocks
and dense blocks (see Section 2.1.3). The output of a RDB has direct
connection to each layer of the next RDB, resulting in a contiguous
memory mechanism. In addition to LFF within each RDB, the outputs
of successive RDBs are also concatenated to conduct global feature
fusion to exploit hierarchical global features in a holistic manner.

In order to further improve the performance of image SR networks,
the residual in residual dense block (RRDB) (Wang et al., 2018b),
where residual learning is employed in different levels, (see Section 2.1.3)
has been proposed. A similar network structure that applies multi-
level residual learning has also been proposed in (Zhang et al., 2018c).
However, RRDB network differs from the one in (Zhang et al., 2018c) as
Wang et al., 2018b employ dense skip connections to improve the learning
capacity. They also exploit residual scaling, i.e., scaling the residuals
down by multiplying them with a constant between 0 and 1 before
adding to the main path for more stable training.

Finally, DRCA (Jang and Park, 2019) proposes a different combi-
nation of ResNet, DenseNet, and channel attention, where dense skip
connections are between residual groups rather than convolution layers.

4.1.5 Comparison of SR Network Architectures

The network architectures reviewed in this Section have different block
structures, type of skip connections between convolutional layers and
blocks, numbers of layers, and trainable parameters. Each model has its
unique basic block structure, e.g., EDSR (Lim et al., 2017) has resid-
ual blocks, RCAN (Zhang et al., 2018e) has residual-in-residual blocks
within residual groups, and RDN (Zhang et al., 2018f) is composed of
residual dense blocks. We provide a comparison network architectures
in Table 4.2, where we provide the total number of layers and trainable
parameters to compare the computational complexity of different archi-
tectures, because counting the total number of blocks would not be fair
since residual blocks in EDSR contain 2 convolutional layers, whereas
RRDB blocks contain 5 convolutional layers.
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Table 4.2: Total number of convolutional layers and trainable parameters

Model Connection Connection No. of No. of
between layers between blocks Layers Parameters

EDSR residual residual 36 1.5 M
EDSR+ residual residual 68 43 M
RDN dense residual/dense 150 19 M
RCAN residual residual 335 6.6 M
RRDB dense residual 351 16 M
DRCA residual dense 360 14.2 M

In terms of PSNR performance, RCAN, RRDB, and DRCA provide
better results compared to that of EDSR+, although EDSR+ has more
parameters. Hence, the performance of image SR networks cannot be
predicted by the number of trainable parameters only, and the architec-
ture of the network including the depth and width of the network and
the type and number of skip connections matters.

4.1.6 Supervised Training of SR Models

These networks are trained to minimize the average per-pixel distortion
between estimated HR images and the corresponding ground truth
images using loss functions such as l2, l1, Charbonnier loss, or Huber
loss given synthetically generated LR and HR training image pairs.
The pixel-wise l2 loss is also known as the mean-squared-error (MSE).
The Charbonnier loss given by

lC(x, x̂) =
√

(x− x̂)2 + ε2 (4.1)

where x and x̂ are the ground-truth and estimated HR images and ε is a
positive constant, is an approximation to the l1 loss that is differentiable
about 0. Huber loss, given by

lH(x, x̂) =
{

1
2(x− x̂)2 if |x− x̂| ≤ δ
δ|x− x̂| − 1

2δ
2 if |x− x̂| > δ

(4.2)

is a combination of l2 and l1 losses that is also differentiable about 0.
Minimization of l2 and l1 loss results in the arithmetic mean-unbiased

estimator and median-unbiased estimator, respectively. The l2 loss has
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the disadvantage that it is not robust against outliers when the distri-
bution is heavy tailed. Huber loss combines the sensitivity of the mean-
unbiased, minimum-variance arithmetic mean estimator and the robust-
ness of the median-unbiased estimator.

The model accuracy is also affected by the patch size of training
samples, mini-batch size, the optimizer, and learning rate schedule.

4.2 Self-Organizing Residual Networks for Image Restoration/SR

The operational neural networks (ONNs) and their “self-organized”
variants (Self-ONN) that can approximate any non-linearity via Taylor
series have been introduced in Section 2.2 as an alternative to using
ConvNets with RELU nonlinearity. We also discussed replacing standard
convolutional layers in residual blocks with self-organized layers to form
self-organized residual (SOR) blocks in Section 2.2. In this section, we
show that using SOR blocks in feedforward network architectures results
in better image restoration and SR performance compared to using
standard residual blocks in similar architectures with the same number
of parameters.

Keleş et al., 2021a explore network architectures with SOR blocks
for image restoration and SR and compare their performance with
the popular EDSR residual ConvNet architecture. Networks composed
of only SOR blocks and a hybrid architecture shown in Figure 4.2 have
been proposed. They show that a network composed of only 8 SOR
blocks outperform the baseline EDSR network, while a hybrid network
with 12 residual and 4 SOR blocks outperform both by an average
margin of 0.2 dB. More importantly, they show that networks with SOR
blocks avoid some visual artifacts that are seen in the EDSR results.

Figure 4.2: A hybrid SR network with residual and SOR blocks (Keleş et al., 2021a).
In EDSR, residual blocks in the gray shaded box are replaced by SOR blocks. Regular
convolutional layers in the Upsampler are also replaced with self-organizing layers.
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4.3 Transformer Networks for Image Restoration and SR

The application of self-attention or vision transformer architectures to
image restoration and SR is a very recent research topic. In this section,
we review the very few works available in the literature at present.

An approach that is different from the fidelity optimized learned
SISR methods discussed so far is the neural texture transfer technique,
which aims to integrate similar textures in a different HR reference
(Ref) image into a given LR target image. Texture transfer is also
different from self-example-based SR approach (Liu et al., 2007) in
that it uses an external Ref image rather than self-similarity. It has
proven to be promising in recovering HR details when a Ref image with
similar content as that of the LR input is available. Yang et al., 2020
propose a new Texture Transformer Network for Image SR (TTSR),
in which the LR and Ref images are formulated as queries and keys in
a transformer, respectively. TTSR consists of four modules optimized
for image generation tasks, including a learnable texture extractor,
a relevance embedding module, a hard-attention module for texture
transfer, and a soft attention module for texture synthesis. The proposed
design encourages joint feature learning across LR and Ref images, in
which deep feature correspondences can be discovered by attention, and
thus accurate texture features can be transferred. TTSR can be stacked
in a cross-scale way to enable texture recovery from different resolution
levels, e.g., from 1× to 4× magnification.

Inspired by the success of pre-training transformer-based models on
a large text corpus and then fine-tuning them on task-specific smaller
datasets in natural language processing (NLP), Chen et al., 2021 propose
a pre-trained transformer model for image processing called Image
Processing Transformer (IPT). As IPT needs to be compatible with
different image processing tasks, such as SR, denoising, and deraining,
the network is composed of multiple pairs of head and tail corresponding
to different tasks and a single shared body. The overall architecture
consists of four components: heads for extracting features from corrupted
input images, an encoder-decoder transformer for recovering the missing
information in the input data, and tails for mapping the features into
restored images. The IPT model with multi-heads and multi-tails is
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trained on a large number of synthetically generated corrupted image
pairs from ImageNet benchmark. In addition, contrastive learning is
introduced for well adapting to different image processing tasks. The pre-
trained model can therefore be efficiently employed on desired task after
fine tuning. It has been shown that pre-trained IPT can outperform
the state-of-the-art methods on various image processing benchmarks.

SwinIR (Liang et al., 2021) combines the benefits of both ConvNet
and Swin Transformers. It consists of three modules: shallow feature ex-
traction, deep feature extraction, and image reconstruction. The shallow
feature extraction module uses a convolution layer to extract features,
which are directly transmitted to the reconstruction module to pre-
serve low-frequency information. The deep feature extraction module is
composed of residual Swin Transformer blocks (RSTB), which utilize
several Swin Transformer layers for local attention and cross-window
interaction. In addition, they add a convolution layer at the end of
the block for feature enhancement and use a residual connection to pro-
vide a shortcut for feature aggregation. Finally, both shallow and deep
features are fused in the reconstruction module. The implementation of
reconstruction module uses the sub-pixel convolution layer to upsample
the features. Experimental results demonstrate that SwinIR outper-
forms state-of-the-art methods on different tasks by up to 0.14-0.45dB,
while the total number of parameters is reduced by up to 67%.

Uformer (Wang et al., 2022) is an effective and efficient Transformer-
based architecture for image restoration, which builds a hierarchical
encoder-decoder network using the Transformer block. There are two
core designs in Uformer: First, the authors introduce a locally-enhanced
window (LeWin) Transformer block, which performs nonoverlapping
window-based self-attention instead of global self-attention. This step
significantly reduces the computational complexity on high resolution
feature maps while capturing local context. Second, they propose a
learnable multi-scale restoration modulator in the form of a multi-
scale spatial bias to adjust features in multiple layers of the Uformer
decoder. The modulator provides superior capability for restoring details
for various image restoration tasks while introducing marginal extra
parameters and computational cost. Uformer shows high capability for
capturing both local and global dependencies for image restoration.
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4.4 Perceptual Image Restoration and SR

Early learned SISR methods employed the same l2 or l1 loss functions
as the classical model-based SR methods for supervised training of
ConvNets as discussed in Section 4.1.6. However, it is well-known that
minimizing l2 loss (mean-square error) typically results in unnatural-
looking blurry textures since the minimum mean squared error estimator
is the conditional mean, and the arithmetic mean of natural images is
not necessarily a natural image. Different from classical model-based
methods, deep-learning based SR allows for optimization using any
differentiable loss, such as perceptual losses.

Perceptual SR methods can be classified as: i) training feedforward
models using full-reference perceptually motivated loss functions, dis-
cussed in Section 4.4.1, and ii) training generative SR models. Generative
models aim to capture the probability distribution of natural images
given sample natural images (assuming samples are drawn from the
same distribution), and allow drawing new samples from the estimated
distribution. Various approaches have been proposed for generative mod-
eling: Deep learning based approaches include generative adversarial
networks (GANs) (Goodfellow et al., 2014), variational auto-encoders
(VAEs) (Kingma and Welling, 2014), and normalizing flow-based meth-
ods (Rippel and Adams, 2013). GANs and VAEs have demonstrated
impressive results on learning distribution of natural images. However,
neither allows for exact evaluation of the density at a new sample (i.e.,
the likelihood). Furthermore, training can be challenging due to mode
collapse, vanishing gradients and other instabilities (Salimans et al.,
2016). Normalizing flow-based methods (Papamakarios et al., 2021;
Kobyzev et al., 2021) offer more stable training and allow for both
sampling and exact and efficient probability density evaluation.

We review generative adversarial SR models in Section 4.4.2. The fea-
sible solution in image restoration and SR is discussed in Section 4.4.3.
Normalizing flow-based SR models that learn the conditional distribu-
tion of HR images given LR inputs using the negative log-likelihood loss
is discussed in Section 4.4.4. Perceptual SR methods provide sharper
details at the expense of a decrease in PSNR as predicted by perception-
distortion trade-off theory (see Section 3.5).
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4.4.1 Training Regressive SR Models using Perceptual Loss

Images with high perceptual quality can be reconstructed by defining
and optimizing full-reference perceptually motivated loss functions based
on either hand-crafted low-level image features, such as MS-SSIM (see
Section 3.1.3), or features extracted by pre-trained networks, such as
LPIPS (see Section 3.1.5). Optimization of SR models with respect to
a weighted combination of l1 loss and MS-SSIM loss has been heavily
adopted in practice due to good visual quality of resulting HR images.

Perhaps the earliest work that used a learned feature reconstruction
loss for the SR task is (Johnson et al., 2016). Rather than forcing pixels
of the reconstructed HR image ŷ = fW (x) to exactly match the pixels
of the target image y, they enforce the reconstructed and target images
to have similar features as computed by a pre-trained loss network φ.
If we let φj(x) be the feature tensor with the shape Cj ×Hj ×Wj at
the output of the jth layer of the ConvNet φ(x) processing the input
image x, then the feature reconstruction loss is the normalized squared
Euclidean distance between features of the reconstructed image ŷ and
target image y given by

`jφ(y, ŷ) = 1
Cj ·Hj ·Wj

||φj(y)− φj(ŷ)||2 (4.3)

Finding an image ŷ that minimizes the feature reconstruction loss (4.3)
for early layers j tends to yield an HR image that is perceptually
similar to the target image y, but not necessarily match it pixel-by-pixel.
A more recent example of a popular feature loss for perceptual SR is
LPIPS (Zhang et al., 2018d).

4.4.2 Generative Adversarial SR Models

The GAN framework was first exploited for the SISR problem in the sem-
inal work SRGAN (Ledig et al., 2017), where the generator G is a SR
network that predicts HR images given LR inputs, and the discrim-
inator D estimates the probability that its input is a predicted vs.
ground-truth HR image. SRGAN aims to strike a balance between
the fidelity and photo-realism of the reconstructed HR images by train-
ing the generator G using a loss, which is a weighted sum of a fidelity loss
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and an adversarial loss (as a function of probabilities estimated by D).
The adversarial loss encourages the predicted HR images to be closer
to the manifold of natural images in the solution space. The weighting
parameter λ determines the trade-off between the fidelity and photo-
realism. The photo-realism provided by hallucinating realistic textures
comes at the expense of lower fidelity, i.e., lower PSNR values. The per-
ceptual quality of reconstructed HR images was measured by the mean
opinion score (MOS) of human evaluators in the subjective tests. It was
observed that the addition of an adversarial loss results in improvements
in MOS at the expense of significantly lower PSNR.

Later Blau and Michaeli, 2018 have shown that distortion (fidelity)
and perceptual quality are indeed at odds with each other. Specifically,
they show that as the mean distortion decreases, the probability of cor-
rectly discriminating the outputs of an image reconstruction algorithm
from real images must increase, which implies worse perceptual quality.
Moreover, this result is not only related to the PSNR or SSIM criteria,
but holds true for any distortion (full-reference) measure. Hence, they
define a perception-distortion (PD) bound and demonstrate that GANs
provide a principled way to approach the PD bound. Following their
work, the first Challenge on Perceptual Image Restoration and Manipu-
lation (PIRM) has been announced (Blau et al., 2018). An important
problem was to identify a suitable objective measure to evaluate percep-
tual image quality since conducting subjective tests at a large scale is
not practical. The PIRM 2018 SR Challenge employed the perceptual
index (PI), a no-reference measure, defined by (3.5), which is shown to
be highly correlated with human ratings, to assess perceptual quality.

The winner of the PIRM Challenge was a generative adversarial
model, called the Enhanced SRGAN (ESRGAN) (Wang et al., 2018b).
The authors observe that details hallucinated by SRGAN are often ac-
companied with unpleasant artifacts. Hence, they revise three key com-
ponents of the SRGAN model: i) They improve the architecture of the
generator by introducing the Residual-in-Residual Dense Block (RDDB),
which has higher learning capacity and is easier to train; ii) They em-
ploy the relativistic discriminator originally proposed by (Jolicoeur-
Martineau, 2019), which estimates the probability that the given real
data is more realistic than fake data, on average, and show that this
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helps the generator recover more realistic texture details; iii) They
propose an improved perceptual loss, using the VGG features before
activation instead of after activation, which provides sharper edges and
more visually pleasing results. Benefiting from these improvements, the
proposed ESRGAN achieves consistently better visual quality with more
realistic and natural textures than SRGAN.

A limitation of adversarial SR models is that they cannot be trained
using the evaluation criterion directly as loss, since NIQE and Ma mea-
sures that make up the PI measure are not differentiable. To address this
problem, Zhang et al., 2019 propose SRGAN with Ranker (RankSR-
GAN), which first trains a Ranker that learns to rank HR images
according to their perceptual scores and then introduces a rank-content
loss to optimize the generator for perceptual quality. Experimental
results show that RankSRGAN can combine the strengths of different
SR models to achieve the state-of-the-art performance in perceptual SR.

4.4.3 The Feasible Solution in Image Restoration/SR

Image restoration and SR are ill-posed inverse problems with potentially
infinitely many feasible solutions. The set of feasible solutions is defined
as those satisfying all known constraints; namely, all images that are
consistent with the given LR image under a known degradation model.
At higher upscaling factors, the problem becomes even more difficult,
since the set of feasible solutions becomes huge. The problem is further
complicated by the fact that there is no single definition of the “best”
solution. As discussed in Chapter 3, there are multiple optimization
and evaluation criteria some of which are at odds with each other.

Yet, this is not a new observation. The observation that signal
restoration problem has multiple feasible solutions and that there is
no single definition of the best solution was first made by Trussell and
Civanlar, 1984, who proposed the projection onto convex sets (POCS)
framework to find a feasible solution. Later, Irani and Peleg, 1991
proposed backprojection method, which is similar to POCS, for image
super-resolution from multiple images, and Patti et al., 1997 applied the
POCS framework to video SR accounting also for motion blur. Note that
none of these classic approaches use fidelity to the original as criterion.
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Recently, Bahat and Michaeli, 2020 presented a consistency enforcing
module (CEM) that introduced the feasible solution constraint into
learned SR frameworks. CEM does not have any learnable parameters
and can wrap any SR network to enforce its output matches the LR input
when down-sampled. Their reconstruction network adopts an adversarial
loss to encourage perceptual plausibility of the output by penalizing
deviations from the statistics of natural images, while the CEM enforces
consistency constraint. They do not employ a fidelity loss. They also
present a GUI to enable users to interactively explore the manifold of
feasible SR solutions, by inputting a control signal to the SR network.

4.4.4 Normalizing Flow-Based Generative SR Models

Normalizing flows (NF) provide a general methodology for constructing
arbitrary probability distributions over continuous random variables.
Let x be a D-dimensional real vector, and suppose we would like to
define a joint distribution over x. The main idea is to express x as
a transformation T of a real vector z0 sampled from a simple base
distribution pZ0(z0), i.e., x = T (z0). Then, the distribution of x can be
expressed by the change of variables formula. Flow methods construct
arbitrarily complex densities by composing several simple transforma-
tions, i.e., T = TK ◦· · ·◦T1 and applying the change of variables formula
successively. The defining property of flow-based models is that the
transformation T must be invertible and both T and T−1 must be dif-
ferentiable, which is guaranteed if all transformations Tk, k = 1, . . . ,K
are invertible and differentiable. The path traversed by the random
variables zk = Tk(zk−1), k = 1, . . . ,K, where x = zK is called the
flow and the inverse path from x to z0 is called a normalizing flow
assuming the base distribution pZ0(z0) is a joint Gaussian (normal
distribution). The transformation T and the base distribution pZ0(z0)
have parameters, denoted by φ and ψ, respectively, which induces a
family of distributions over x parameterized by φ and ψ. More details
can be found in the excellent review articles (Kobyzev et al., 2021;
Papamakarios et al., 2021).

Flow-based generative models using deep learning were first de-
scribed in Rippel and Adams, 2013, then extended in Rezende and
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Mohamed, 2015; Dinh et al., 2017, and Kingma and Dhariwal, 2018.
Rippel and Adams, 2013 proposed using the change of variables for-
mula and modeling the mapping through an invertible neural network.
However, naive application of the change of variable formula produces
models which are computationally expensive and poorly conditioned.
Rezende and Mohamed, 2015 propose the specification of approximate
posterior in variational inference by using normalizing flows and consider
normalizing flows for which the Jacobian of the transformation can be
computed in linear time. The basic idea in RealNVP (Dinh et al., 2017)
is to choose transformations whose Jacobian matrix is triangular by
proposing invertible affine coupling layers. Glow (Kingma and Dhariwal,
2018) proposed 1x1 convolutions as a generalization of fixed partition
permutation used by (Dinh et al., 2017) and demonstrated the first
likelihood-based model in the literature that can efficiently synthesize
high-resolution (HR) natural images.

NFs can synthesize HR images efficiently by sampling from a learned
distribution, but in the SR task, the learned distribution should be
conditioned on a given LR image. Winkler et al., 2019 studied conditional
normalizing flows (CNFs), a class of NFs where the mapping from
the base random variable z0 to output HR space x is conditioned on an
LR input y, to model the conditional density pX|Y (x|y). This is achieved
by conditioning the base distribution and transformation parameters
on the LR input y by using conditional affine coupling layers, which
concatenates the encoded conditioning variable in the affine coupling
layers. Like NFs, CNFs are efficient in sampling and inference, and they
are trained with an exact log-likelihood objective.

SRFlow (Lugmayr et al., 2020b) is a CNF based SR method that
also extends the Glow architecture (Kingma and Dhariwal, 2018) to
learn an exact mapping from HR image manifold to a latent space by
modeling the conditional distribution of the HR image given the LR
input. In contrast to the conditional affine coupling layers in Winkler et
al., 2019, SRFlow proposes an affine injector layer, which directly affects
all channels and spatial locations in the activation map by predicting an
element-wise scaling and bias using the conditional encoding. A CNF-
based SR model allows sampling multiple output images from a learned
HR space given an LR image. This way it learns to predict diverse photo-
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realistic high-resolution images, directly accounting for the ill-posed
nature of the SR problem. The model is trained in a principled manner
using a single negative log-likelihood loss. SRFlow outperforms state-of-
the-art GAN-based approaches in terms of both PSNR and perceptual
quality metrics, while allowing for diversity through the exploration of
the space of super-resolved solutions.

SRFlow-DA (Jo et al., 2021) extends SRFlow by stacking more
convolutional layers in the affine couplings to enlarge the receptive
field and have more expressive power. Compared to SRFlow, SRFlow-
DA achieves better or comparable PSNR and LPIPS for ×4 and ×8
SR tasks, while having a reduced number of parameters. As a result,
the model can be trained on a GPU with 11GB memory.

4.5 Dealing with Model Overfitting in Supervised Training

The SISR methods discussed so far rely on supervised training of a single
SR model for all images in the test set given a training set consisting
of HR and LR image pairs. A limitation of supervised training is that
the performance of the SR model deteriorates when the characteristics of
images in the test set deviate from those in the training set. There are two
main sources of variability between the training set and test set: variation
of blur kernel and variation of image prior. Methods to deal with
overfitting the image prior and the degradation model are discussed in
Sections 4.5.1 and 4.5.2, respectively. We note that while both variations
result in deterioration of SR performance, using an incorrect blur kernel
affects SR performance far more than any choice of an image prior.

4.5.1 Overfitting Image Prior: Multi-Model SR

Kirmemis and Tekalp, 2018 observe that the performance of even
the best performing image restoration/SR model, in the ideal case there
is no misfit of blur kernel, varies noticeably from image to image over a
test set depending on how well the patterns in each test image match
those in the training set. They report that the standard deviation of
the MSE or PSNR values over a test set is almost equal to their mean,
where individual image PSNR values can vary up to 5 dB within a test
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Figure 4.3: The multi-model SR (MMSR) architecture consisting of a number of
class-specific SR models and a fusion network (Korkmaz, 2021).

set. This indicates that a single SR model cannot generalize equally
well for all images within a test set even when the blur kernel is known.
This observation and the success of early class-based image hallucination
methods (Baker and Kanade, 2000; Liu et al., 2007) motivate us to
explore SR models that exploit class-specific image priors.

Different network architectures can be conceived to benefit from
class-specific image priors in image processing tasks. One approach
would be to cluster or classify training images into a predetermined
number of homogeneous classes, e.g., text, texture, face, etc., and
train a different SR network for each class. Then, during inference, a
pre-classifier network directs each LR image to the corresponding SR
model. However, this approach would run into a problem in the case
of non-homogeneous images, i.e., images containing a combination of
text, texture, face, etc. In order to handle non-homogeneous images, a
multi-model SR (MMSR) architecture consisting of a number of class-
specific SR models and a post fusion network depicted in Figure 4.3
was proposed (Korkmaz, 2021).

The MMSR architecture employs a bank of N standard SR models,
e.g., EDSR (Lim et al., 2017) or RCAN (Zhang et al., 2018e), as class-
specific SR models. The fusion model merges the outputs of these
class-specific SR models to benefit from the best aspects of each one
of them. Experimental results show that a simple fusion network with
three residual blocks is sufficient to obtain very good results. The input
to the fusion model is a stack of 3N images consisting of R, G and B



64 Deep Image Restoration and Super-resolution

outputs of N SR models. The output of the fusion model is a single
RGB image. The fusion model is trained by using HR and LR image
patches similar to training the class-specific and generic SR models.

Experimental results indicate that the MMSR approach is superior
to segmenting the input image into homogeneous regions using an image
segmentation network, directing each region to the corresponding SR
model, and finally combining the results of different SR models. More
interestingly, experimental results also show that even in the case of
homogeneous LR images, processing the input image with multiple
models each tuned to image priors of a particular class and then fusing
the results produced by these multiple models by a post-fusion network
outperforms the performance of even the best class-specific model
trained for the particular class of images.

4.5.2 Variation of the Blur Kernel: Blind vs. Non-blind SR

The supervised training paradigm given a set of LR-HR image pairs
assumes that the LR image formation model (blur kernel) for images in
the training set matches that of the LR images in the test set exactly.
SR models obtained by supervised training provides the best state-of-
the-art performance when the LR image formation model is known and
the training set is generated using this known model.

On the other hand, in real SR applications, the LR image formation
model is often unknown, and the performance of SR models trained
based on an assumed bicubic degradation model is unsatisfactory when
the unknown model deviates from the assumed bicubic blur kernel. This
is because the blind SR problem, where the blur kernel is unknown, is
doubly ill-posed. The standard SR problem with known blur kernel is
ill-posed because the solution is not unique, i.e., multiple HR images
can be generated from a single LR image. In the blind SR problem, not
only multiple HR images can be generated from a single LR image, but
also multiple LR images can be generated from the same HR image
depending on the choice of the blur kernel. Hence, in blind SR, the true
HR image may not even be in the set of all possible solutions that can
be generated by an SR algorithm using a blur kernel that deviates from
the actual one.
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This subsection considers the blind SR setting, where the blur kernel
is unknown, but paired training data is still assumed to be available, i.e.,
we are given LR-HR pairs without knowing the LR image formation
model. Possible solution strategies to alleviate overfitting the assumed
LR image formation model given paired training data include:
i) Estimate the blur kernel from given HR, LR training image pairs;
ii) Propose SR models that are robust to variations in the blur kernel
without explicitly estimating LR image formation model; iii) Perform
blind-SR by alternating between kernel estimation and SR image re-
construction; iv) Allow to input an image-specific (pre-estimated) blur
kernel along with the LR input image at inference time.
These approaches are discussed in more detail in the following. The real-
world SR setting, where the blur kernel is unknown and only unpaired
data is available, is considered in Section 4.6.

NTIRE Blind SR Challenges

A lot of progress in this area has been achieved in the NTIRE SR
challenges. Hence, we first provide a quick review of solutions proposed
in the NTIRE blind/real-world SR challenges.

The first NTIRE Challenge in 2017 (Timofte et al., 2017) had a
track called "unknown downscaling," where only synthetically generated
LR, HR image pairs were made available, but the blur filter was not
disclosed. Since the number of provided image pairs is usually limited,
the solution proposed by some teams was to first learn the HR to LR
mapping using a simple network consisting of two residual blocks so
that they can generate more training pairs consistent with the given
ones by applying the learned mapping on extra HR images as a method
for data augmentation. Some of these methods also boost performance
using "enhanced prediction" or "ensembles" (Timofte et al., 2016), which
flips and rotates (in 90◦ steps) each input LR image to obtain 4 or 8 SR
results that are aligned back through the inverse transformation and
averaged to get the final result.

NTIRE 2018 (Timofte et al., 2018) featured three synthetically
generated paired HR, LR datasets downscaled by a factor of 4 from
the DIV2K dataset (Agustsson and Timofte, 2017) with unknown
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blur kernels in realistic mild, difficult and wild adverse conditions.
In the realistic mild and difficult conditions, LR images are generated
by emulating a camera acquisition pipeline, where the degradation was
stronger in the latter. In the wild condition, the hidden blur kernel
varied from image to image. Team UIUC-IFP obtained the best PSNR
and SSIM for all 3 cases using WDSR (Yu et al., 2019). WDSR is an
extension of EDSR (Lim et al., 2017), where the number of feature
channels are increased before the non-linear activation in each residual
block and then reduced again for summation with the shortcut branch
of the identity mapping.

NTIRE 2019 Challenge on Real Image Super-Resolution (Cai et al.,
2019a) introduced the first paired HR, LR image dataset captured by
real camera, called RealSR (Cai et al., 2019b). Participants were asked to
map LR images captured by a DSLR camera with a shorter focal length
to corresponding HR images captured at a longer focal length. The best
results were achieved by the UDSR, which is a U-Net (Ronneberger
et al., 2015) based architecture. They employ a three-stage cascaded
training framework such that in each stage, they use the output of the
previous stage as input and each stage has different ground-truths from
coarse to fine. They utilized an adaptive multi-model ensemble method
to improve the results. The second best result was obtained by Feng et
al., 2019. They apply the MixUp principle (Zhang et al., 2018a) to train
networks on interpolations of sample pairs, which encourages the model
to support linear behavior in-between training samples. They also pro-
pose a data synthesis method with learned degradation to avoid model
overfitting under very limited training samples and achieve satisfactory
generalization performance. The proposed approach is independent of
network architecture and task; hence, can be applied to other image
restoration tasks. The results of this challenge reveal that SISR models
trained on simulated data (i.e., bicubic downsampling) are hard to
generalize to practical applications since the authentic degradations in
real-world LR images are more complex.

Because the AIM 2019 and NTIRE 2020 Challenges on Real-World
Image SR provided unpaired training data, they will be discussed
in Section 4.6.
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Single Model that Learns Multiple Degradations

Another approach that competed in the NTIRE 2019 Real SR Challenge
is the SRMD network (Zhang et al., 2018b), which is a single model that
is trained to handle multiple known degradations. The SISR networks
discussed so far compute an estimate the HR image x̂ by a nonlinear
mapping F with parameters θ and input LR image y, given by

x̂ = Fθ(y) (4.4)

SRMD takes the known or estimated blur kernel k and noise level σ as
input in addition to the LR image y. Hence, it can be expressed by

x̂ = Fθ(y,k, σ) (4.5)

The LR image, blur kernel, and noise level are formatted into an input
tensor of size H ×W × (C + b+ 1), where H,W , and C are the height,
width, and number of channels of the LR image, respectively, and b is
the number of elements in the blur kernel k. All elements of each channel
representing the blur kernel are equal to one element of k. The noise
level is also represented by a channel with all elements equal to σ.
In the supervised training phase, at each epoch, they randomly sample
a pre-determined degradation space to select a blur kernel and a noise
level in order to synthesize LR images from HR images. During testing,
they either assume the blur kernel and noise level are known or estimate
them for each test image to form the input tensor.

Unified dynamic convolutional network for variational degradations
(UDVD) (Xu et al., 2020) extends SRMD by introducing dynamic con-
volution kernels to propose a non-blind SISR network to accommodate
two types of blur kernel variations, inter-image variations and spatial
(intra-image) variations. While the standard convolution layer learns a
kernel that minimize the error across all pixels, dynamic convolution
generates per pixel (spatially-varying) kernels by a parameter-generating
network (Brabandere et al., 2016). Moreover, the standard convolution
kernel is input-agnostic, i.e., fixed after training. In contrast, the pro-
posed dynamic convolution adapts to different input even after training.
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Deep SR with Known Blur Kernel via MAP Estimation Framework

A different approach to handle image-specific known blur kernels with
a single network is based on integration of model-based methods and
deep learning under a unified maximum a posteriori (MAP) estimation
framework. The MAP inference problem can be formulated as

x̂(λ) = argx min
1
2 ||y−Hx||2 + λR(x) (4.6)

where H and R are blur and regularization (image prior) operators.
Half-quadratic splitting formulation introduces an auxilary variable z

x̂(λ) = argx min
1
2 ||y−Hx||2 + λR(z) (4.7)

such that z = x, to allow decoupling MAP inference into separate data
fidelity and image prior subproblems, which can be solved by minimizing
the cost function

Lµ(x, z) = 1
2 ||y−Hx||2 + λR(z) + µ

2 ||z− x||2 (4.8)

The solution can be obtained by the following two-step iterations:

x̂k = argx min
1
2 ||y−Hx||2 + µ||x− zk−1||2 (4.9)

ẑk = argz min
µ

2 ||z− xk||2 + λR(z) (4.10)

These two subproblems can be solved by neural modules, resulting in an
end-to-end trainable, iterative network unfolding the MAP inference.

At a high-level, algorithm unfolding or unrolling maps an iterative
algorithm to a corresponding deep network by representing each iteration
of the algorithm with a subnetwork. these subnetworks are cascaded
as many times as the number of iterations of the algorithm needs
to be executed (Monga et al., 2021). The parameter vector θ that is
updated at each iteration of the algorithm is transferred into network
parameters θ1, θ2, . . .. We learn the network parameters θ1, θ2, . . . from
training data sets through end-to-end supervised training. The resulting
network could achieve better performance than the original iterative
algorithm. In addition, the network naturally inherits interpretability
from the iteration procedure.
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Unfolding SR network (USRNet) (Zhang et al., 2020b) alternates
between a data consistency subnetwork and image prior subnetwork
with K = 8 iterations. As the solutions of the subproblems require
hyper-parameters αk and βk as input, respectively, a hyper-parameter
module H is further introduced into USRNet. The USRNet inherits
the flexibility of model-based methods to super-resolve blurry, noisy
images for different scale factors via a single model, while maintaining
the advantages of learning-based methods.

Blind SR with Image-Specific Kernel Adaptation

We discussed two different approaches to handle known blur kernels,
namely, concatenating the blur kernel to the input LR image, and
algorithm unfolding. When used in the context of blind SR, these
methods employ a two-step procedure: first, they estimate the unknown
blur kernel and noise level by some other approach; then, they use the
estimated blur kernel as input to the non-blind SR algorithm. However,
blur kernel estimation is a difficult ill-posed problem in itself, i.e., it
is sensitive to observation noise and does not have a unique solution.
The two-step solution involves two independently trained models, which
do not cooperate with each other. As a result, an inaccurate blur kernel
estimate from the first step directly affects the quality of the SR estimate
in the second step.

Gu et al., 2019 observed that artifacts caused by blur kernel mis-
match are asymmetric, i.e., if the estimated kernel is smoother than
the real one, the SR image is oversmoothed/blurry; on the other hand,
if the estimated kernel is sharper than the real one, the SR image is
over-sharpened and has ringing artifacts. They propose an Iterative
Kernel Correction (IKC) (Gu et al., 2019) method for blind SR to grad-
ually correct the estimated blur kernel during inference. The proposed
iterative method consists of a prediction step, which provides the initial
blur kernel estimate, an SR model, which takes the blur kernel as input,
and a correction step, which estimates the kernel error using intermedi-
ate SR results. They also proposed an improved SR model for multiple
blur kernels, called SFTMD, by using spatial feature transform (SFT)
layers and an advanced ConvNet structure to outperform SRMD.
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Deep alternating network (DAN) (Luo et al., 2020), further improves
this framework. Specifically, they design two ConvNets, called Restorer
and Estimator. The Restorer restores SR image based on the predicted
kernel, and the Estimator estimates the blur kernel given the restored
SR image. The method alternates between these two modules and
unfolds this process to form an end-to-end trainable network. DAN
provides superior results compared to IKC because the Estimator uses
information from both LR and SR images, which makes the estimation of
blur kernel easier; and the Restorer is trained with the kernel estimated
by the Estimator, instead of the ground-truth kernel, which makes
the Restorer more tolerant to kernel estimation errors.

4.6 Real-World SR by Deep Unsupervised Learning

SR models learned from synthetically generated paired HR, LR image
datasets have significantly outperformed conventional methods when
trained and tested with the same known degradation model. However,
when it comes to real-world problems, they have very limited use because
real LR images are degraded by blur and noise, which are unknown
in the practical setting. Furthermore, in real-world SR, there is no
ground-truth; hence there is no paired data available for training.

As a result, methods that can be trained by unpaired data sets, or
without an external training set, or require no training are of interest.
We start by discussing three non-blind SR methods: deep image prior
that requires no training in Section 4.6.1, deep plug-and-play that
relies on a pre-trained deep denoiser in Section 4.6.2, and deep internal
learning that does not require an external training set in Section 4.6.3.
We then discuss blind SR approaches that can be trained by unpaired
external datasets in Section 4.6.4 and Section 4.6.5.

4.6.1 Deep Image Prior

Deep image prior (Ulyanov et al., 2020) uses the inductive bias of an
untrained neural network as an image prior and completely removes the
regularization term in (4.6). Hence, the problem formulation becomes

x̂(λ) = argx min
1
2 ||y−Hx||2 (4.11)
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such that x = G(z, θ), where G(z, θ) is a generative neural network
with latent variables z and trainable parameters θ.

This problem can be solved by optimizing over the trainable param-
eters θ, while the latent variable z is initialized randomly and kept fixed.
Although, we can also optimize over the latent variable, it has been
reported that this does not help improve the performance significantly.

This approach does not use any training or pre-trained model. Only
the observed corrupted image is used in the process of optimization.
However, it does require solving a new optimization problem for each
image for inference. We note that this is a non-blind method; i.e., it
requires the blur kernel to be known or estimated by other means.

4.6.2 Plug-and-Play Image Restoration and SR

Deep plug-and-play method is an alternative non-blind solution to the
MAP estimate we discussed in Section 4.5. More specifically, we showed
that half quadratic splitting of the MAP solution yields the two-step
iteration given by Equations (4.9) and (4.10).

Instead of unfolding the iterations for an end-to-end optimized solu-
tion, we make the observation that Equation (4.10) defines a denoising
problem and replace that step with a denoiser ConvNet, which acts
as an image prior for the image restoration/SR problem (Zhang et al.,
2017). Hence, the main idea of deep plug-and-play methods is that a
pre-trained denoiser ConvNet can implicitly serve as the image prior
for model-based methods to solve inverse problems.

This approach is called plug-and-play because we simply plug the pre-
trained ConvNet into the iterations as the solution for Equation (4.10),
while we typically provide a closed-form solution for Equation (4.9)
given the blur kernel. Hence, deep plug-and-play methods are essentially
iterative model-based methods, which suffer from a high computational
load at inference and they involve manually selected hyper-parameters.
A thorough analysis of this approach including parameter setting, in-
termediate results, and empirical convergence to better understand the
working mechanism, is provided in (Zhang et al., 2021).
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4.6.3 Deep Internal Learning

Zero-shot SR (ZSSR) (Shocher et al., 2018) is a non-blind unsupervised
deep learning method, which takes advantage of self-similarity and
internal statistics of images and do not rely on an external training set,
given the blur kernel. Similar to deep image prior and plug-and-play
methods, we need to train a different inference model for each test
image. However, unlike those two methods, the model learns an image
prior for each test image.

ZSSR generates an image-specific SR model, where a small ConvNet
model, with 8 convolutional layers and 64 output channels, is trained
on image patches obtained from the test image itself. The main idea
of ZSSR is to exploit internal self-similarity of images, i.e., repetition
of patches within an image. It is stated that no matter how large a
dataset is used for training the internal and unique characteristics of
an image can be only found in the image itself. ZSSR is a non-blind
SISR method, which requires the blur kernel as input. The blur kernel
is estimated by another method, such as KernelGAN (Bell-Kligler et al.,
2019). The main disadvantage of, zero-shot models is that they need to
be trained for each test image individually, which is time consuming.

4.6.4 Blind Real-World SR

A promising solution to the real-world SR problem is a two-stage
method, where in the first stage real-world LR images with unknown
degradation are mapped to bicubic downsampled "look-alike" images,
and in the second stage these intermediate domain images are super-
resolved by a second network trained on synthetically generated bicubic
sampled paired data. In this strategy, the performance of the first stage
is crucial, where there are two possible approaches: i) in an actual real-
world setting, there are no paired dataset; hence, the training of the first
stage network is based on unpaired dataset, ii) there is some external
paired real-world dataset available; hence, training of the first-stage
network can be supervised.

Yuan et al., 2018 propose a Cycle-in-Cycle GAN (CINCGAN) net-
work, with GAN as the basic building block, using unpaired data
for training. The CINCGAN architecture consists of two CycleGANs:
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The first CycleGAN maps the LR image to the clean and bicubic-
downsampled LR space. For training, LR images are generated syn-
thetically from HR images. Then, the first network learns to map the
distribution real LR images to the distribution of synthetically gener-
ated LR images from unpaired data. This module ensures that each
LR input image is properly denoised/deblurred. Then, the intermediate
bi-cubicly downsampled look-alike image is up-sampled to the desired
size by a pre-trained deep model based on bicubic downsampling model.
Finally, the parameters of the whole network are fine-tuned using adver-
sarial learning in an end-to-end manner. Experiments on NTIRE2018
datasets demonstrate that the proposed unsupervised method achieves
comparable results as the state-of-the-art supervised models.

Rad et al., 2021 also proposed a similar two-stage process to han-
dle the real-world SR problem in two steps. However, they assumed
availability of paired real datasets captured by real cameras, such as
the RealSR dataset. This way they trained the first stage network,
converting real-world LR images to bicubic look-alike ones using paired
real LR and bicubic LR pairs, where bicubic LR images are synthetically
generated from ground-truth HR images. The second stage network,
super-resolving bicubic look-alike images is trained on bicubic LR and
ground-truth HR pairs. This approach yields excellent results provided
that the real LR images have blur kernel that is the same as in the avail-
able real paired training data.

4.6.5 Real-World SR Challenges

AIM 2019 (Lugmayr et al., 2019) and NTIRE 2020 (Lugmayr et al.,
2020a) real-world SR challenges were designed according to the real-
world image acquisition setting, i.e., the blur kernel was unknown and
no paired LR-HR images were provided.

In AIM 2019, there were two tracks. In Track 1, only one set of
source (LR) input images is provided for training, where the goal is to
super-resolve images while preserving the characteristics of the source
input domain. In Track 2, a set of high-quality images is also provided for
training, which defines the desired quality of target (HR) domain images.
To allow for quantitative evaluation, the source LR images in both tracks
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are generated by applying synthetic, but realistic degradations to a
combination of DIV2K (Agustsson and Timofte, 2017) and Flickr2K
(Wang et al., 2018b) datasets. The quality of SR images was evaluated by
a human study in terms of Mean Opinion Score (MOS). The winner team,
MadDemon, first trained a network, called DSGAN, that can simulate
the natural image characteristics (i.e. degradations). The team then used
the generated data to train an SR model based on ESRGAN (Wang et al.,
2018b), which improves its performance on real-world data. Furthermore,
they propose to separate the low and high frequency images and treat
them differently during training. Since low frequencies are preserved by
the downsampling operation, its corresponding upsampling operation
can be trained using a simple pixel-wise loss. The teams Nam and
CVML employ the inverse strategy, i.e. they first learn a network that
cleans the image before super-resolution.

In NTIRE 2020 (Lugmayr et al., 2020a), a set of images from the LR
source domain and a set of unpaired HR images from the target domain
were provided. In Track 1, the aim is to super-resolve images with
synthetically generated image processing artifacts, which allows for
quantitative benchmarking of the approaches compared to a ground-
truth image. In Track 2, real low-quality smart phone (iPhone3) images
of the DPED dataset (Ignatov et al., 2017) have to be super-resolved.
The results of both tracks are evaluated for perceptual quality based
on a human study. Team Impressionism (Ji et al., 2020), which focuses
on estimating blur kernels and real noise distributions at the same
time, obtained the best results for the distortion and perception metrics
in both tracks. They employed KernelGAN (Bell-Kligler et al., 2019)
method for explicit estimation of blur kernel for Track 2.
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Video SR (VSR) can be posed as a sequence of single-image SR (SISR)
problems or as a multi-frame SR (MFSR) problem. In contrast to
SISR, which relies only on natural image priors and/or self-similarity
within images to recover missing high-frequency details, MFSR addi-
tionally exploits temporal correlations between frames for improved
performance. Basic VSR architectures consist of temporal propagation,
frame/feature alignment, feature aggregation, and upsampling blocks
and design choices for propagation and alignment can result in significant
performance differences (Chan et al., 2021a). Temporal information can
be propagated locally within sliding temporal windows or over longer
durations by recurrent architectures. Perhaps the most simplistic model
of a video is to represent all frames of a scene by a single image and
a set of motion trajectories (Tekalp, 2015), which is the basic assump-
tion behind motion compensated frame/feature alignment. We review
the state of the art sliding temporal window VSR architectures and
recurrent VSR architectures in Section 5.1 and Section 5.2, respectively.
Blind VSR architectures are introduced in Section 5.3. Perceptual video
restoration and SR is discussed in Section 5.4. Section 5.5 provides a
short introduction to commonly used VSR datasets.

75
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5.1 Video SR based on Sliding Temporal Window

Sliding temporal window approaches leverage temporal information
within 2N+1 frames centered about the current frame t to be processed,
i.e., propagation of temporal information is local inside the temporal
window t−N, · · · , t+N . Caballero et al., 2017 classify sliding window
temporal modelling approaches as: i) feature fusion using 2D ConvNets,
and ii) spatio-temporal feature extraction using 3-D ConvNets. We
discuss these two approaches in Section 5.1.1 and 5.1.2, respectively.

5.1.1 ConvNet Architectures for Feature Fusion

There exist a variety of ConvNet architectures for sliding temporal
window feature fusion, which differ in their alignment and aggregation
strategies. The frames can be aligned by either explicitly estimating
optical flow in the pixel domain using a separate network or implicitly
in the feature space by using deformable convolutions (Dai et al., 2017),
(Tian et al., 2020) in order to fully exploit the temporal information.
The frame/feature aggregation strategies can be classified as early fusion
and slow fusion architectures (Caballero et al., 2017).

In the early fusion architecture, the depth of the input layer of
the network is set equal to the number of input frames 2N + 1 within
the sliding window. The frames are concatenated after proper alignment
and fed to the network as a stack. This will collapse all temporal
information into a fused feature tensor in the first layer of the network
(hence, the terminology early fusion) and the remaining layers are similar
to those in a single image SR network. Alternatively, each frame can
be input to a separate convolution layer (Kappeler et al., 2016) or
pairs of frames (with proper alignment) can be input to convolution
layers (Caballero et al., 2017) in parallel resulting in multiple feature
tensors that can be concatenated in subsequent layers of the network.
This process is generally referred to as slow fusion.

One of the earliest works that used neural networks for VSR proposed
a two-layer network with fully connected layers (Cheng et al., 2012).
They take a sliding temporal window with 5 consecutive LR frames as
input to reconstruct the center (current) frame. The video is processed
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patch by patch, where a 3 × 3 HR patch from the current frame is
reconstructed based on a 5 × 5 × 5 LR volume. In order to generate
the input LR volume, 5 × 5 patches from neighboring frames are aligned
with the reference patch from the current frame by block matching.

Liao et al., 2015 propose a two-stage method, where they generate
high-resolution SR-drafts under different flow models. In the first stage,
two motion compensation algorithms with 9 parameter settings are used
to generate SR drafts in order to mitigate motion compensation errors.
In the second stage, all drafts are combined using a ConvNet. Later,
Kappeler et al., 2016 proposed VSRNet, which estimates optical flow
field to align corresponding patches across multiple frames by backward
warping. In both methods, motion estimation step is separated from
training the reconstruction ConvNet. Furthermore, Kappeler et al., 2016
first upsamples and then warps frames, where both operations involve
an interpolation, which causes loss of high-frequency details.

Caballero et al., 2017 and Makansi et al., 2017 independently pro-
posed end-to-end video SR frameworks, which incorporate motion com-
pensation as a submodule in the VSR network architecture. In these
methods, flow estimation and HR reconstruction modules are trained
simultaneosly using a single objective function. The integration requires
motion compensation to be performed by a differentiable layer. To this
effect, Caballero et al., 2017 used an efficient spatial transformer network
for motion compensation, while Tao et al., 2017 proposed a sub-pixel
motion compensation (SPMC) layer. Makansi et al., 2017 proposed a
joint upsampling and backward warping (JUBW) layer to perform up-
sampling and warping in a single step and showed this provides superior
results. In addition, they showed image-based training provides results
that are superior to patch-based training in Kappeler et al., 2016.

Accuracy of estimated optical flow is crucial for temporal modeling
and erroneous motion compensation can undermine results of video SR.
To this effect, (Liu et al., 2018) propose temporal adaptive neural net-
work in order to robustly handle various types of motion and adaptively
select the optimal range of temporal dependency to extract useful infor-
mation among consecutive frames and alleviate the detrimental effect
of erroneous motion estimation. The deep dual attention network (Li
et al., 2020) proposes using pyramid representation of motion. It con-
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sists of two subnets: i) motion compensation net (MCNet) employs a
pyramid representation of the reference and supporting frames to learn
the optical flow and leverages the detail components of LR frames as
complementary information to decrease mis-registration errors. ii) SR
reconstruction net (ReconNet) implements dual attention mechanism
to focus on informative features to recover high-frequency details.

A more effective approach to deal with the issues related to accuracy
of optical flow estimation is to perform frame alignment in the feature
space as opposed to pixel-domain alignment. The temporal deformable
alignment network (TDAN) (Tian et al., 2020) has been proposed to
adaptively align the reference frame and each supporting frame using
deformable convolutions in the feature space without computing optical
flow. In the deformable convolution (Dai et al., 2017), pixels under
the kernel are displaced according to learned offsets ∆p(i,j). Hence,
deformable convolution can be expressed as:

y(p(m,n)) =
∑
(i,j)

w(i, j) · x(p(m−i,n−j) + ∆p(i,j)), (5.1)

where p(m,n) denotes the current pixel, w(i, j) are kernel weights, and
i, j ∈ (−1, 0, 1) for a 3× 3 deformable convolution. TDAN uses features
from both the reference frame and each supporting frame to dynamically
predict sampling offsets of deformable convolution kernels. The HR
video frame is predicted by aggregating aligned feature maps using a
reconstruction network similar to other VSR approaches.

A highly successful implementation of the early fusion ConvNet
architecture is the EDVR (Wang et al., 2019). EDVR extends TDAN
with two improvements: i) a Pyramid, Cascading and Deformable (PCD)
alignment module, in which frame alignment is done at the feature level
using deformable convolutions in a coarse-to-fine manner to handle large
motions is implemented; ii) a Temporal and Spatial Attention (TSA)
fusion module is proposed. Temporal attention weighs each neighboring
feature at each location by the element-wise correlation between features
of the reference frame and each neighboring frame. Spatial attention
assigns weights to each location in each feature channel to exploit cross-
channel more effectively. EDVR won all four tracks in the NTIRE 2019
video restoration and enhancement challenge (Nah et al., 2019b).
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Video Enhancement and SR Net (VESR-Net) (Chen et al., 2020)
improves upon the performance of EDVR by means of two innovations:
i) Separate Non-Local (SNL) architecture for fusion of aligned features,
and ii) Channel-Attention Residual Block (CARB) for reconstruction
network. VESR-Net employs PCD alignment as in EDVR, but uses
SNL architecture to aggregate information across aligned frames. For
reconstruction, VESR-Net utilizes stacked CARB as in RCAN (Zhang
et al., 2018e) followed by a feature decoder. They employ L1 loss on
the central target frame for training. Efficient Video Enhancement
and Super-Resolution Net (EVESRNet) (Fuoli et al., 2020) extends
VESRNet by replacing the SNL module with a more efficient Efficient
Point-Wise Temporal Attention Block (EPAB). This block aggregates
the spatio-temporal information with less operations and memory con-
sumption, while still providing the same high performance. EVESR-Net
has won AIM 2020 (Fuoli et al., 2020) Extreme Video SR Challenge.

Local-Global Fusion Network (LGFN) for Video SR (Su et al., 2020)
propose deformable convolutions (DCs) with decreased multi-dilation
convolution units (DMDCUs) for efficient implicit alignment. Moreover,
a structure with two branches, consisting of a Local Fusion Module
(LFM) and a Global Fusion Module (GFM), is proposed to combine
information from two different aspects. Specifically, LFM focuses on
the relationship between adjacent frames and maintains the temporal
consistency while GFM attempts to take advantage of all related features
globally with a video shuffle strategy.

5.1.2 3-D Convolutional Networks

Perhaps the most straightforward extension of SISR ConvNet architec-
tures to VSR is to replace 2-D filter kernels with 3-D kernels, resulting
in 3-D ConvNets. Unlike 2-D filters with size height× width that slid
horizontally and vertically and are applied on the full channel depth,
3-D filters have a third size parameter, temporaldepth, so that they
are swept horizontally, vertically, and temporally (Tran et al., 2015).
3-D ConvNets are effective because they extract spatio-temporal fea-
tures directly from raw video. A 3-D convolution layer can be seen as a
special case of slow fusion (Caballero et al., 2017). In slow fusion, each



80 Deep Video Restoration and Super-resolution

layer merges features from d frames, where d is smaller than the number
of frames 2N+1 in the sliding temporal window. If successive 2-D layers
share weights, then slow fusion is equivalent to a single layer of 3-D
convolution to extract spatio-temporal features.

For a given number of layers, 3-D ConvNets have larger number of
learnable parameters compared to 2-D ConvNets; hence, require very
large video datasets and more computational resources for effective
training (Hara et al., 2018). Resource efficient 3-D ConvNet architec-
tures that are extensions of well-known efficient 2-D ConvNets (e.g.,
SquezeNet, MobileNet, etc.) with group convolutions and depth-wise
separable convolutions as main building blocks have been introduced
to alleviate this problem and compared in terms of number of layers,
nonlinearities, and skip connections in (Köpüklü et al., 2019).

VSR architectures that employ 3-D convolution layers include Jo et
al., 2018, which is an end-to-end deep neural network that generates dy-
namic upsampling filters (DUF) and a residual image that are computed
depending on the local spatio-temporal neighborhood of each pixel to
avoid explicit motion compensation. Kim et al., 2019 stacked multiple
3-D convolutional layers to extract both spatial and temporal features
within a temporal sliding window over an entire video. Deformable 3-D
Net (Ying et al., 2020) integrates 3-D convolution (Tran et al., 2015)
and deformable convolution (Dai et al., 2017) to propose deformable
3-D convolution (D3D), which can achieve efficient spatio-temporal
information exploitation and adaptive motion compensation.

An empirical investigation of efficient spatio-temporal modeling (Fan
et al., 2019) has shown that early fusion models can achieve comparable
results to 3-D ConvNet models with less computational complexity.

5.2 Video SR based on Recurrent Architectures

VSR methods based on a sliding temporal window treat reconstruc-
tion of each HR frame as a separate multi-frame SR task, which has
weaknesses, including: i) reconstructing each HR frame, conditioned
on the input frames, independently limits the ability of the system to
produce temporally consistent HR frames, and ii) each input LR frame
is warped multiple times, increasing the computational cost.
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Recurrent neural network (RNN) architectures have been shown to
be highly effective in sequential processing of time series data. The recur-
rent model captures the temporal dependencies in a hidden state that is
passed to successive time steps. RNNs are trained using backpropagation-
through-time (Werbos, 1990) in a stateless or stateful manner. When
unfolded into time steps, RNNs are analogous to deep ConvNets with
shared parameters. Hence, training vanilla RNNs suffers from vanish-
ing/exploding gradients problem after a number of time steps (layers)
similar to training vanilla deep ConvNets. The vanilla RNN also has
limited capability to remember long term dependencies.

Long Short TermMemory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) have been proposed to address both vanishing/exploding
gradients problem and modeling long-term dependencies. LSTM intro-
duces input, output, and forget gates to control the flow of information.
These gates learn the relevant information to keep in the cell state, i.e.,
the long-term dependencies, during training using sigmoid activations.
The gates also enable flow of information to avoid vanishing/exploding
gradients. Gated recurrent unit (GRU) (Cho et al., 2014) is a simplified
form of LSTM with only two gates: update gate and reset gate.

ConvNets are ideally suited to process images, while LSTMs are
effective for processing time series data. Since video can be considered
as a time sequence of images, a natural choice would be to combine
the benefits of both architectures. To this effect, ConvLSTM layer (Shi
et al., 2015) has been proposed as an effective tool for video processing.
The hidden states in ConvLSTM are 2-D feature maps rather than 1-D
vectors as in RNN/LSTM. ConvLSTM is a recurrent layer, just like
LSTM, but internal matrix multiplications representing fully-connected
neurons are replaced by convolution operations; hence, the number of
parameters are reduced from millions to a few tens of thousands. As a
result, ConvLSTM layers are highly efficient to compute and to train.

A simple approach for VSR without motion estimation and compen-
sation would be to consider LR frames as input to a ConvLSTM layer;
then, the predicted HR frames can be reconstructed by upsampling
the outputs at different time steps. Deep recurrent Resnet (DRRNet)
for video SR (Lim and Lee, 2017) consists of 10 residual blocks, where
the first residual block has two ConvLSTM layers followed by 9 regular
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residual blocks each formed by Convolution-RELU-Convolution layers.
There is also a global skip connection to implement residual learning. All
convolutions are 3×3, and the number of channels is 64. The DRRNet
upsamples LR feature maps at the last stage using a combination of
convolution and pixel shuffle layers before forming HR frames.

Huang et al., 2015; Huang et al., 2018 proposed a bidirectional re-
current convolutional network (BRCN), which is a ConvLSTM network
with 3-D convolutions for inputs rather than the conventional 2-D convo-
lutions. The 3D convolutions extract features from not only the input at
the current time step but also from multiple adjacent layers at previous
time steps to transfer to the current hidden state. Hence, the hidden
state is able to capture informative patterns along both spatial and
temporal dimensions to more effectively describe slow and fast varying
motions across a series of frames. Different from recurrent convolutions
connecting hidden states that mainly deal with long-term slow-varying
motions, 3D convolutions connecting inputs focus on features of fast
varying motions. They directly operate on original frames that can
provide more visual details than abstracted hidden layers. The classic
LSTM runs in the forward direction along the timeline, which models
the dependency between the current frame and its previous frames. To
additionally consider the dependency between the current frame and
future frames, BRCN combines a forward and a backward sub-networks
to jointly make the final prediction.

Spatial-temporal recurrent residual network (STR-ResNet) (Yang
et al., 2018) takes not only the LR frames but also the differences of
adjacent LR frames as input. When the recurrent units are unrolled,
STR-ResNet connects SISR networks for each frame to embed the
temporal correlation. It reconstructs an HR frame through fusing its
corresponding LR frame and the predicted spatial residue, under the
guidance of the predicted temporal residues among adjacent frames.

While Lim and Lee, 2017 and Huang et al., 2018 pass the hidden
state that represents long-term features to the next step, the frame-
recurrent video SR (FRVSR) framework (Sajjadi et al., 2018) passes
the previous output frame to the next step to produce temporally con-
sistent HR videos. However, FRVSR requires explicit motion estimation
and warping operations to exploit temporal information.
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Efficient video super-resolution through recurrent latent space prop-
agation (RLSP) (Fuoli et al., 2019) also passes the previous output
frame to the next step similar to (Sajjadi et al., 2018) but does not
employ on an explicit motion compensation module, instead relies on a
recurrent hidden state, and takes multiple LR frames within a sliding
temporal window as input similar to (Huang et al., 2018) to efficiently
leverage temporal information implicitly. The multiple input LR frames
are concatenated together with the recurrent LR state tensor ht−1 and
subsampled previous output frame. The combined tensor is then fed
into a convolution RLSP cell with n = 7 layers and ReLU activation.
The outputs of the RLSP cell at each time step t are the hidden state
ht for the next time step and the output HR frame.

Recurrent Back-Projection Network (Haris et al., 2019) extends
Deep Back-Projection Networks (DBPN) (Haris et al., 2021) developed
for the SISR task to the multiple-image SR (MISR) or VSR task. DBPN
produces a HR feature map, which is iteratively refined through multiple
up- and down-sampling layers. RBPN relates multiple input video frames
as LR images to compute residuals for the target HR frame, where HR
feature maps representing missing details are iteratively refined by up-
and down-sampling processes to improve the quality of SR.

Isobe et al., 2020 revisits the question of what is the best temporal
modeling strategy, and makes the observation that it is hard to compare
the effectiveness of various approaches directly from published results
because different methods adopt different network sizes, loss functions,
and training sets to train their models. The experimental results in Isobe
et al., 2020, which were obtained with comparable training strategies
and data, show that recurrent models are highly efficient and effective
for the VSR task. They propose incorporating residual connection into
the hidden state of the recurrent network and call the resulting model
as Recurrent Residual Network (RRN) for VSR and show that RRN
achieves the state-of-the-art performance on three benchmarks.

Chan et al., 2021a observe that most VSR methods consist of four
inter-related components, namely, propagation, alignment, aggregation,
and upsampling. They find that different propagation and alignment
strategies significantly affect the results and that bidirectional propaga-
tion coupled with a simple optical flow-based feature alignment suffice to
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outperform many state-of-the-art methods. Many recurrent methods do
not perform alignment of features/images during propagation. Without
proper alignment, local convolution operations, which have relatively
small receptive fields, are inefficient in aggregating the information
across multiple frames. It is also observed that image-based alignment
is inferior to feature alignment. BasicVSR (Chan et al., 2021a) adopts
bi-directional recursion for temporal propagation and optical flow for
spatial alignment, but instead of warping images as in previous works,
feature warping is performed for better performance. They show there
is a drop of 1.19 dB in PSNR if alignment is skipped. The aggregation
and upsampling steps of BasicVSR are similar to other VSR works.

BasicVSR++ (Chan et al., 2021b) improves the performance of
BasicVSR further by introducing second-order grid propagation and flow-
guided deformable alignment. Benefiting from these new components,
BasicVSR++ surpasses BasicVSR by 0.82 dB in PSNR with similar
number of parameters. In addition, BasicVSR++ generalizes to other
video restoration tasks, such as compressed video enhancement, well.
In the NTIRE 2021 Video Super-Resolution and Compressed Video
Enhancement Challenges, BasicVSR++ was ranked first-place three
times and runner-up once.

5.3 Blind Video Restoration and Super-resolution

All learned VSR methods discussed so far assume a very simple LR
frame formation model with a fixed down-sampling filter, e.g., a bi-cubic
or Gaussian kernel. In Section 4.5.2, we stated that real-world learned
SISR is complicated because real-world LR images are formed by various
types of down-sampling filters and factors, and learned SISR methods
have a tendency to overfit the down-sampling filter used in the synthetic
training set. Real-world LR video frame formation is further complicated
by motion-induced spatial blurring in addition to the down-sampling
anti-alias filter. Since motion blur is video-dependent, the corresponding
kernel should be estimated for each test video individually. Hence, blur
kernel estimation should be part of the VSR network architecture.

Methods that include a blur kernel estimation module are called
blind SISR/VSR architectures. Blind VSR methods first estimate the un-
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known blur kernel, and then employ the predicted kernel in the SR model.
Existing kernel estimation approaches either exploit self-similarity with
the hypothesis that similar patterns and structures across different
scales appear in natural images or design an iterative algorithm. In
the blind VSR setting, each LR video may have resulted from a different
down-sampling process and may suffer from motion blur; therefore,
test-time kernel estimation/adaptation is crucial.

Deep blind video SR (Pan et al., 2021) propose a deep ConvNet
that consists of motion blur kernel estimation, motion estimation, and
latent image restoration modules. The motion blur estimation module
has two fully connected layers, where the first layer is followed by a
ReLU activation and the second one by a softmax function to ensure
that elements of the blur kernel are non-negative and their sum is 1.
Following the plug-and-play SISR with deep denoiser prior (Zhang
et al., 2021), they first estimate an intermediate latent HR image using
a closed-form deconvolution model with the estimated blur kernel and
then explore the information in adjacent frames using a deep ConvNet
prior to restore the final high-quality HR image.

DynaVSR (Lee et al., 2021) introduces an efficient Multi-Frame
Downscaling Network (MFDN), and combines it with the VSR network
to adapt to each dynamically-varying input video. The training process
of DynaVSR consists of three stages: 1) estimation of the unknown
down-sampling process with the MFDN, 2) joint adaptation of MFDN
and VSR network parameters with respect to each input video, and
3) meta-updating the base parameters for MFDN and VSR network.
At test time, only steps 1) and 2) are processed, and updated parameters
of the VSR network are used to generate the final HR frames.

5.4 Perceptual Video Restoration and Super-resolution

Learned VSR methods in Section 5.1-Section 5.3 have been trained to
minimize the average per-pixel distortion, such as l2, l1, Charbonnier,
or Huber loss, between estimated HR frames and the corresponding
ground truth frames given synthetically generated LR and HR training
video pairs. However, it is well-known that optimization with respect to
a distortion loss typically results in blurry unnatural looking textures.
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Different from the classical model-based methods, learned SR al-
lows for optimization with respect to perceptual losses. This was first
exploited in the SISR problem, where it was shown that a trade-off
exists between fidelity and perceptual image quality (see Section 4.4).
The first Challenge on Perceptual Image SR (Blau et al., 2018) was
motivated by this trade-off, and the winner was a generative model,
called ESRGAN (Wang et al., 2018b). Recently researchers started to
extend perceptual SISR methods to perceptual VSR. Perceptual SR
methods provide sharper texture in each frame of video at the expense
of a decrease in PSNR as predicted by perception-distortion trade-off
(see Section 3.5). Perceptual SR methods can be classified as: i) methods
that employ full reference perceptually motivated loss functions, and
ii) generative methods that employ a no-reference perceptual loss or
adversarial loss in addition to l2/l1 loss. We focus on the latter here.

A Generative Adversarial Network (GAN) formulation for VSR with
an adversarial texture loss was proposed in (Lucas et al., 2019). They
introduce VSRResNet as the Generator along with a discriminator
network. However, they address temporal consistency of SR frames
neither in the training process nor in evaluation. IseeBetter (Chadha
et al., 2020) is another GAN-based spatio-temporal approach to VSR
that aims to render temporally consistent SR videos. ISeeBetter extracts
spatial and temporal information from the current and neighboring
frames using the recurrent back-projection networks (Haris et al., 2021)
as its generator. The authors use the discriminator from SRGAN. They
employ a a combination of four loss functions, namely, MSE, perceptual,
adversarial, and total-variation (TV) loss, for training.

It is important to note that typical VSR methods, whether based
on fidelity alone or perceptual optimization, calculate losses per frame,
and therefore, do not take temporal consistency into account explicitly.
Temporal inconsistencies result in a low perceptual quality SR video even
if the texture in each frame looks natural, as humans can detect motion
jitter easily. There exist few works that model or enforce temporal
consistency of frames or naturalness of motion in VSR explicitly.

Pérez-Pellitero et al., 2018 and Pérez-Pellitero et al., 2019 treat tem-
poral consistency explicitly using a recurrent network with adversarial
training. The proposed recurrent architecture leverages information
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from previous frames, i.e., the input to the generator is composed of
the LR image and the warped output of the network at the previous step.
Together with a video discriminator, they propose static temporal loss
and temporal statistics loss to further reinforce temporal consistency in
the generated sequences.

TempoGAN (Xie et al., 2018) is a temporally coherent generative
model addressing the SR problem for fluid flows. It employs a spatial
discriminator and a temporal discriminator, which take a triple set of
aligned ground-truth and super-resolved frames as inputs. While other
works make use of manually selected layers of pre-trained networks,
such as the VGG net, as feature loss, TempoGAN uses features of the
discriminator as constraints instead.

TecoGAN (Chu et al., 2020) propose a temporally self-supervised al-
gorithm and show that temporal adversarial learning is key to achieving
temporally coherent solutions without sacrificing spatial detail. They
introduce a spatio-temporal discriminator structure together with a set
of training objectives for a realistic and coherent VSR task. They also
propose a Ping-Pong loss to improve the long-term temporal consistency.

Motivated by the perceptual straightening hypothesis (Henaff et
al., 2019) of the human visual system, (Kancharla and Channappayya,
2021) proposed a quality-aware discriminator model to enforce the
straightness on the trajectory of the perceptual representations of video
frames. To extract the perceptual representation, lateral geniculate
nucleus (LGN) is implemented using a two-stage model, where the first
stage is composed of bandpass filters and the second stage is a non-linear
block that performs luminance and contrast gain control.

The VSR models are typically evaluated by the classic distortion
measures, such as PSNR and SSIM, as well full-reference perceptually-
motivated measures, such as LPIPS (Zhang et al., 2018d), and no-
reference perceptual measures, such as Natural Image Quality Evaluator
(NIQE) (Mittal et al., 2013). However, all these metrics are originally
designed for single images. When used for video, different poolings over
frames are reported. Consequently, these measures cannot reflect the
effect of temporal consistency and motion artifacts. An early measure
that was developed for video is MOtion-based Video Integrity Evaluation
(MOVIE) (Seshadrinathan and Bovik, 2010), which utilizes a spatio-
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spectrally localized multiscale framework for evaluating dynamic video
fidelity that integrates both spatial and temporal (and spatio-temporal)
aspects of distortion assessment. More recently, TecoGAN introduced
tOF and tLP as temporal coherency metrics (See Section 3.3). tOF
measures the pixel-wise difference of motions estimated from sequences
and tLP is based on the error between LPIPS of sequential frames for
predicted and pristine videos, justifying that natural videos exhibit a
certain amount of perceptual changes over time. STraightness Evaluation
Metric (STEM) (Kancharla and Channappayya, 2022) combines the
NIQE metric with a blind temporal NR-VQA algorithm, which is based
on the straightness of perceptual trajectory of natural video frames.

5.5 Video SR Datasets

Popular datasets for VSR research include Vimeo-90K (Xue et al., 2019),
REDS (Nah et al., 2019a), and RealVSR (Yang et al., 2021).

Vimeo-90K consists of more than 90,000 septuplets collected over
the Internet. Each septuplet contains 7 frames with spatial resolu-
tion 256×448. REDS dataset consists of 300 sequences captured by
the GOPRO sport camera. Each sequence contains 100 frames with
spatial resolution 720×1280. When using these datasets, LR sequences
are synthesized from HR sequences with simple degradation models,
such as bicubic downsampling or direct downsampling after Gaussian
smoothing.

When applying the VSR models trained on these datasets to real-
world LR videos, the super-resolved videos are often over-smooth and
prone to visual artifacts because the degradation process of real-world
videos is more complex. This motivates the need for a new dataset
for real-world VSR research. The RealVSR dataset (Yang et al., 2021)
consists of paired LR-HR video sequences recorded by the multi-camera
system of iPhone 11 Pro Max to capture the same dynamic scene simul-
taneously. Since the LR-HR video pairs are captured by two separate
cameras, the users should be aware that there may be misalignment
and luminance/color differences between them.



6
Conclusions

Learned image/video restoration and SR rest on three pillars, the archi-
tecture, the loss function, and training data and methodology, which
affect the quality of results. The quality of the results need to be dis-
cussed with respect to the appropriate evaluation/assessment criteria,
which could be fidelity or perceptual criteria. The desired trade-off
between them depends on the application, where for information-centric
applications fidelity is more important than perceptual quality, while it
is vice versa for aesthetics-centric applications. Sections 6.1 and 6.2 sum-
marize the current state of the art, open problems, and future directions
in each of the three pillars for SISR and VSR tasks, respectively.

6.1 State-of-the-art and Future Directions in Learned SISR

Standard SISR problem: We can consider the problem of model training
with l1 or l2 loss using paired LR-HR data, where LR images are
synthetically generated with a known blur kernel as solved. The only
factor that would affect the results is the network architecture, and
network architectures for SISR have saturated, i.e., there is a small
difference on the quality of the results measured by PSNR or MS-SSIM
between the recent competing architectures, perhaps less than 0.5 dB.
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Open problems for further research include:
Perceptual SISR problem: Conditional generative models hallucinate

textures learned from distribution of HR images, which result in sharper
SR images that are more appealing to human viewers. However, this
comes at the expense of reduced fidelity compared to the ground-truth
since some of the hallucinated texture may not be real or may not be well
registered with the ground-truth. This brings the issue of importance of
fidelity for a given application and what is the best distortion-perception
tradeoff. Furthermore, there are several approaches to generative mod-
eling including GAN vs. flow-based models vs. diffusion models. Which
generative modeling approach is best suited to perceptual SR is an open
research problem.

Real-world SISR problem: This is perhaps the most interesting
open research problem, since both the standard SR and perceptual
SR problem formulations assume a known blur kernel to generate a
synthetic paired training set and learned SR models do not generalize
well to blur kernels other than the one used in the training set. In
the real-world setting, the blur kernel is unknown and there are no
paired data to train the model, which makes the problem challenging.
The main solutions proposed in the literature are: i) two-step process,
where the unknown blur kernel is first identified and then a non-blind
restoration/SR method is employed, or ii) unsupervised training of a
blind SR model using an unpaired dataset. Since the former approach is
prone to blur kernel estimation errors, the latter seems more promising.

6.2 State-of-the-art and Future Directions in Learned VSR

Multi-frame image SR vs. VSR: The traditional sliding temporal window
problem formulation is to super-resolve each video frame independently
benefiting from temporal correlations among adjacent frames. However,
this approach neglects the temporal consistency between the SR video
frames and may result in flickering artifacts. Proposed solutions to
address this problem include employing recurrent networks and/or
explicit temporal consistency constraints.

VSR architectures: While the SISR architectures have saturated,
the VSR architecture is still an open problem. Recurrent network
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architectures appear to be more efficient and effective compared to
fixed-length sliding temporal window approach for propagation of tem-
poral information. Furthermore, both pixel-domain optical flow-based
and feature-space deformable convolutions have their own merits for
frame alignment. Flow-guided recurrent architectures, which utilized
a combination of these methods appear to be the most promising ap-
proach to exploit both short-term and long-term temporal correlations
in a video. This is still an open research problem.

Perceptual VSR: While generative models can render sharper tex-
tures in each frame, they exacerbate the temporal consistency problem
in video SR. Hence, a current research problem of interest is to use
a combination of adversarial losses (for better spatial texture) and
temporal consistency losses to obtain SR videos with sharper texture
and temporal consistency.

Real-world VSR: Blind restoration/super-resolution of real videos
with unpaired training data is a relatively unexplored research problem.
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