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Softmax

Our goal is to extend ideas first explored in logistic regression, which
is a binary classifier, to multi-class problems.
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Multinomial distribution

Multinomial distribution can be used to model a random variable X
that takes values in {1,--- ,k}.

PI‘(X = Z) = ¢z
Since probabilities are non-negative and all sum to 1, Zle ¢; = 1.
Therefore, ¢, =1 — Zf:_ll i

Parameters of a multinomial distribution are ¢1, -+ , ¢p_1.

Example

» Classification in 3 or more classes

» Which of the k diseases does a patient have?

» Does this image contains a horse, a zebra, or a giraffe?
» Modeling a dice throw



Multinomial distribution

Using indicators variables, we can write the the probability of a
multinomial random variable X as follows:

K
Pr(X) = ¢ @ o™ .. i@ = T ¢m @,
i=1

where the indicator variable I;(x) is defined as

Hi(x):{1 if oz =i

0 otherwise
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Bernoulli distribution (recap)

A Bernoulli random variable X takes values in {0, 1}

0 it X =1

1 —60 otherwise

Pr(X16) = {

=0X(1-0)"¥



Multiclass classification

Change of notation: 6;, where i € 1,--- , K now refers to an
(M + 1)-dimensional vector. Previously 6; referred to the ith
element of the (M + 1)-dimensional vector 6.

The goal of multiclass classification is to learn hy(x), which can be
used to assign a label y € {1,---, K} to the input x(V), i € [1, N].
Label y takes values in {1,---, K}, so we can use multinomial
distribution to specify its probability distribution.

Under the assumption that data is i.i.d.

N

Pr(y|X, 6) H (f[( 0)) " <y<z>>>
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Likelihood for ith example



Likelihood for ith example

L(6)) = Pr(y™|X, 6)

K .
_ (@) L (y™)
]1:[1 (haj (x ))

Negative log-likelihood for ith example

K
10) = =" L;(y") log hy, (x7)

J=1



Negative log-likelihood for ith example

Define y(9, a K-dimensional vector as follows:

NOND Li(y")
J 0 otherwise

Here i € [1,N] and j € [1, K]. y¥ is often referred to as one-hot
encoded vector.

We can now write negative log-likelihood as follows

K '
l(H)(Z) = — Z ygl) log he, (x(l))
j=1



Negative log-likelihood for multi-class classification

Putting it all together, we can write the likelihood of data for
multicass classification as

N K
1G Z( >y log h, ( “))
i=1 j=1

In order to estimate the parameters € (i.e., learn the multi-class
classifier), we need to minimize negative log-likelihood.



Negative log-likelihood for multi-class classification

Putting it all together, we can write the likelihood of data for
multicass classification as

N K
=3 | =X v§ 1og by, (x)
=1

7=1

Cross-entropy for sample

In order to estimate the parameters 0 (i.e., learn the
multi-class classifier), minimize the cross-entropy between the
groud truth and predicted distributions.



Softmax function

Softmax function or normalized exponential function “squashes” a
K-dimensional vector z of arbitrary real values to a K-dimensional
vector S(z) of real values in the range [0, 1] that add up to 1.

e

S(z)l = Zk ek

Softmax function is often used to highlight the largest values and
suppress values which are significantly below the maximum value.



Softmax function

Code example (from Wikipedia)

>>> import math

>>>z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

>>> z_exp = [math.exp(i) for i in z]

>>> print([round(i, 2) for i in z_exp])

[2.72, 7.39, 20.09, 54.6, 2.72, 7.39, 20.09]

>>> sum_z_exp = sum(z_exp)

>>> print(round(sum_z_exp, 2))

114.98

>>> softmax = [round(i / sum_z_exp, 3) for i in z_exp]
>>> print(softmax)

[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]



Derivative of softmax function (Case 1)

iS(z)Z- -2 [Zzzezk]
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Derivative of softmax function (Case 1)
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Derivative of softmax function (Case 1)

0 0 e
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Derivative of softmax function (Case 2)

0 0 e
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Derivative of softmax function (Case 2)
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Derivative of softmax function (Case 2)
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Derivative of softmax function (Case 2)
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Derivative of softmax function

We can use Kronecker's delta function d;; to represent the
derivative of a softmax function in terms of itself as follows

0
(,T%S(z)i = 5(2)i(di; — S(2);)

%:{1 if i=j

0 otherwise

Here



Softmax classifier

Probability distribution of label y is given by softmax function.

he, (x) = S(x7);
xT9

Z] < exTO

Negative log likelihood for softmax classifier

K 3 .
— Z yy) log S(x™);  (For ith example)
=1



Softmax classifier (K-classes)

xT0,
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Softmax classifier derivative

Notation change: drop superscript (i) and let S(x¥); = 7; for
simplicity. Recall thatl e {1,---,K}.

0

8 K
879/(9) = 75, [—Zyg'logm] = Zyaw 89z

YZ(Wl(l—Wz Zy] 7T17U)
J#l

=|-yYi+tyim+ Zym) X

i#l

=|-y+ le yi| X
j=1
1

=(—yi+m)x




Softmax classifier gradient descent

Notation: k here refers to the iteration number for gradient descent.
n is the learning rate. [ € {1,--- , K}, where K is the number of
classes or distinct values labels can take.

Stochatic gradient descent

6" — o) _ pv,1(6)

xT'9

k em
_91()+77< K xT9<_yl>x
j=1¢""



Cross-entropy

How do we compare the output of a softmax §(? € RX for the
current example x(?) with the true class label of the current
example?

1. Use one-hot encoding y(* for ground truth labels. If the true
class label of x( is j then the one hot encoding contains all 0
except at index location j where it stores a 1.

2. Compare () and y(* using cross-entropy:

K
Cross-entropy(y ", ) = — 3" yg-l) log yy)
pa N e
true predicted
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Summary

» Multiclass classification
» Multinomial distribution
» Softmax classifier
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