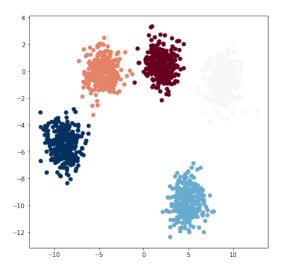
Multi-class Classification (using Softmax) Computer Vision (CSCI 5520G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Softmax

Our goal is to extend ideas first explored in logistic regression, which is a binary classifier, to multi-class problems.



Multinomial distribution

Multinomial distribution can be used to model a random variable X that takes values in $\{1,\cdots,k\}$.

$$\Pr(X=i) = \phi_i$$

Since probabilities are non-negative and all sum to 1, $\sum_{i=1}^k \phi_i = 1$. Therefore, $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$.

Parameters of a multinomial distribution are $\phi_1, \dots, \phi_{k-1}$.

Example

- Classification in 3 or more classes
- ▶ Which of the *k* diseases does a patient have?
- Does this image contains a horse, a zebra, or a giraffe?
- ► Modeling a dice throw

Multinomial distribution

Using indicators variables, we can write the the probability of a multinomial random variable X as follows:

$$\Pr(X) = \phi_1^{\mathbb{I}_1(x)} \phi_2^{\mathbb{I}_2(x)} \cdots \phi_k^{\mathbb{I}_k(x)} = \prod_{i=1}^K \phi_i^{\mathbb{I}_i(x)},$$

where the indicator variable $\mathbb{I}_i(x)$ is defined as

$$\mathbb{I}_i(x) = \begin{cases} 1 & \text{if } x = i \\ 0 & \text{otherwise} \end{cases}$$

1 / 38

Multinomial distribution

Using indicators variables, we can write the probability of a multinomial random variable X as follows:

$$\Pr(X) = \phi_1^{\mathbb{I}_1(x)} \phi_2^{\mathbb{I}_2(x)} \cdots \phi_k^{\mathbb{I}_k(x)} = \prod_{i=1}^K \phi_i^{\mathbb{I}_i(x)},$$

where the indicator variable $\mathbb{I}_i(x)$ is defined as

$$\mathbb{I}_i(x) = \begin{cases} 1 & \text{if } x = i \\ 0 & \text{otherwise} \end{cases}$$

It follows

$$\phi_k=1-\sum_{i=1}^{k-1}\phi_i,\ \phi_i\geq 0\ \text{and}$$

$$\mathbb{I}_k(x)=\sum_{i=1}^{k-1}1-\mathbb{I}_i(x).$$

Bernoulli distribution (recap)

A Bernoulli random variable X takes values in $\{0,1\}$

$$Pr(X|\theta) = \begin{cases} \theta & \text{if } X = 1\\ 1 - \theta & \text{otherwise} \end{cases}$$
$$= \theta^{X} (1 - \theta)^{1 - X}$$

Multiclass classification

Change of notation: θ_i , where $i \in 1, \cdots, K$ now refers to an (M+1)-dimensional vector. Previously θ_i referred to the ith element of the (M+1)-dimensional vector θ .

The goal of multiclass classification is to learn $h_{\theta}(\mathbf{x})$, which can be used to assign a label $y \in \{1, \cdots, K\}$ to the input $\mathbf{x}^{(i)}$, $i \in [1, N]$. Label y takes values in $\{1, \cdots, K\}$, so we can use multinomial distribution to specify its probability distribution.

Under the assumption that data is i.i.d.

$$\Pr(y|\mathbf{X},\theta) = \prod_{i=1}^{N} \left(\prod_{j=1}^{K} \left(h_{\theta_j}(\mathbf{x}^{(i)}) \right)^{\mathbb{I}_j(y^{(i)})} \right)$$

Multiclass classification

Change of notation: θ_i , where $i \in 1, \cdots, K$ now refers to an (M+1)-dimensional vector. Previously θ_i referred to the ith element of the (M+1)-dimensional vector θ .

The goal of multiclass classification is to learn $h_{\theta}(\mathbf{x})$, which can be used to assign a label $y \in \{1, \cdots, K\}$ to the input $\mathbf{x}^{(i)}$, $i \in [1, N]$. Label y takes values in $\{1, \cdots, K\}$, so we can use multinomial distribution to specify its probability distribution.

Under the assumption that data is i.i.d.

$$\Pr(y|\mathbf{X}, \theta) = \prod_{i=1}^{N} \left(\prod_{j=1}^{K} \left(h_{\theta_j}(\mathbf{x}^{(i)}) \right)^{\mathbb{I}_j(\mathbf{y}^{(i)})} \right)$$

where

$$\mathbb{I}_c(y^{(i)}) = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

Multiclass classification

Change of notation: θ_i , where $i \in 1, \cdots, K$ now refers to an (M+1)-dimensional vector. Previously θ_i referred to the ith element of the (M+1)-dimensional vector θ .

The goal of multiclass classification is to learn $h_{\theta}(\mathbf{x})$, which can be used to assign a label $y \in \{1, \cdots, K\}$ to the input $\mathbf{x}^{(i)}$, $i \in [1, N]$. Label y takes values in $\{1, \cdots, K\}$, so we can use multinomial distribution to specify its probability distribution.

Under the assumption that data is i.i.d.

$$\Pr(y|\mathbf{X}, \theta) = \prod_{i=1}^{N} \left(\prod_{j=1}^{K} \left(h_{\theta_j}(\mathbf{x}^{(i)}) \right)^{\mathbb{I}_j(y^{(i)})} \right)$$

where

$$\mathbb{I}_c(y^{(i)}) = \begin{cases} 1 & \text{if } y^{(i)} = c \\ 0 & \text{otherwise} \end{cases}$$

Likelihood for ith example

$$L(\theta)^{(i)} = \Pr(y^{(i)}|\mathbf{X}, \theta)$$
$$= \prod_{j=1}^{K} \left(h_{\theta_j}(\mathbf{x}^{(i)})\right)^{\mathbb{I}_j(y^{(i)})}$$

Likelihood for ith example

$$L(\theta)^{(i)} = \Pr(y^{(i)}|\mathbf{X}, \theta)$$
$$= \prod_{j=1}^{K} \left(h_{\theta_j}(\mathbf{x}^{(i)})\right)^{\mathbb{I}_j(y^{(i)})}$$

Negative log-likelihood for ith example

$$l(\theta)^{(i)} = -\sum_{j=1}^{K} \mathbb{I}_{j}(y^{(i)}) \log h_{\theta_{j}}(\mathbf{x}^{(i)})$$

Negative log-likelihood for ith example

Define $\mathbf{y}^{(i)}$, a K-dimensional vector as follows:

$$\mathbf{y}_{j}^{(i)} = \begin{cases} 1 & \text{if } \mathbb{I}_{j}(y^{(i)}) \\ 0 & \text{otherwise} \end{cases}$$

Here $i \in [1, N]$ and $j \in [1, K]$. $\mathbf{y}^{(i)}$ is often referred to as one-hot encoded vector.

We can now write negative log-likelihood as follows

$$l(\theta)^{(i)} = -\sum_{j=1}^{K} \mathbf{y}_{j}^{(i)} \log h_{\theta_{j}}(\mathbf{x}^{(i)})$$

Negative log-likelihood for multi-class classification

Putting it all together, we can write the likelihood of data for multicass classification as

$$l(\theta) = \sum_{i=1}^{N} \left(-\sum_{j=1}^{K} \mathbf{y}_{j}^{(i)} \log h_{\theta_{j}}(\mathbf{x}^{(i)}) \right)$$

In order to estimate the parameters θ (i.e., learn the multi-class classifier), we need to minimize negative log-likelihood.

Negative log-likelihood for multi-class classification

Putting it all together, we can write the likelihood of data for multicass classification as

$$l(\theta) = \sum_{i=1}^{N} \left(\underbrace{-\sum_{j=1}^{K} \mathbf{y}_{j}^{(i)} \log h_{\theta_{j}}(\mathbf{x}^{(i)})}_{\text{Cross-entropy for sample } i} \right)$$

In order to estimate the parameters θ (i.e., learn the multi-class classifier), minimize the cross-entropy between the groud truth and predicted distributions.

Softmax function

Softmax function or normalized exponential function "squashes" a K-dimensional vector \mathbf{z} of arbitrary real values to a K-dimensional vector $S(\mathbf{z})$ of real values in the range [0,1] that add up to 1.

$$S(\mathbf{z})_i = \frac{e^{z_i}}{\sum_k e^{z_k}}$$

Softmax function is often used to highlight the largest values and suppress values which are significantly below the maximum value.

Softmax function

Code example (from Wikipedia)

```
>>> import math
>>> z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
>>> z_exp = [math.exp(i) for i in z]
>>> print([round(i, 2) for i in z exp])
[2.72, 7.39, 20.09, 54.6, 2.72, 7.39, 20.09]
>>> sum z exp = sum(z exp)
>>> print(round(sum z exp, 2))
114.98
>>> softmax = [round(i / sum_z_exp, 3) for i in z_exp]
>>> print(softmax)
[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]
```

$$\frac{\partial}{\partial z_i} S(\mathbf{z})_i = \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$

$$\frac{\partial}{\partial z_i} S(\mathbf{z})_i = \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$

$$= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right]$$

$$\begin{split} \frac{\partial}{\partial z_i} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \end{split}$$

$$\begin{split} \frac{\partial}{\partial z_i} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{e^{z_i} (\sum_k e^{z_k}) - e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \end{split}$$

$$\begin{split} \frac{\partial}{\partial z_i} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{e^{z_i} (\sum_k e^{z_k}) - e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{\sum_k e^{z_k} - e^{z_i}}{\sum_k e^{z_k}} \right) \end{split}$$

$$\begin{split} \frac{\partial}{\partial z_i} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{e^{z_i} (\sum_k e^{z_k}) - e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{\sum_k e^{z_k} - e^{z_i}}{\sum_k e^{z_k}} \right) \\ &= \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(1 - \frac{e^{z_i}}{\sum_k e^{z_k}} \right) \end{split}$$

$$\begin{split} \frac{\partial}{\partial z_i} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_i} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= \left(\frac{1}{\sum_k e^{z_k}} \right) \frac{\partial}{\partial z_i} e^{z_i} + e^{z_i} \frac{\partial}{\partial z_i} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{e^{z_i} (\sum_k e^{z_k}) - e^{z_i} e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{\sum_k e^{z_k} - e^{z_i}}{\sum_k e^{z_k}} \right) \\ &= \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(1 - \frac{e^{z_i}}{\sum_k e^{z_k}} \right) \\ &= \mathbf{S}(\mathbf{z})_i (1 - \mathbf{S}(\mathbf{z})_i) \end{split}$$

$$\frac{\partial}{\partial z_j} S(\mathbf{z})_i = \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$

$$\frac{\partial}{\partial z_j} S(\mathbf{z})_i = \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$
$$= e^{z_i} \frac{\partial}{\partial z_j} \left[\frac{1}{\sum_k e^{z_k}} \right]$$

$$\frac{\partial}{\partial z_j} S(\mathbf{z})_i = \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$
$$= e^{z_i} \frac{\partial}{\partial z_j} \left[\frac{1}{\sum_k e^{z_k}} \right]$$
$$= \frac{-e^{z_i} e^{z_j}}{(\sum_k e^{z_k})^2}$$

$$\frac{\partial}{\partial z_j} \mathbf{S}(\mathbf{z})_i = \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right]$$

$$= e^{z_i} \frac{\partial}{\partial z_j} \left[\frac{1}{\sum_k e^{z_k}} \right]$$

$$= \frac{-e^{z_i} e^{z_j}}{(\sum_k e^{z_k})^2}$$

$$= -\left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{e^{z_j}}{\sum_k e^{z_k}} \right)$$

$$\begin{split} \frac{\partial}{\partial z_j} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= e^{z_i} \frac{\partial}{\partial z_j} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{-e^{z_i} e^{z_j}}{(\sum_k e^{z_k})^2} \\ &= -\left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{e^{z_j}}{\sum_k e^{z_k}} \right) \\ &= -\left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \end{split}$$

$$\begin{split} \frac{\partial}{\partial z_j} \mathbf{S}(\mathbf{z})_i &= \frac{\partial}{\partial z_j} \left[\frac{e^{z_i}}{\sum_k e^{z_k}} \right] \\ &= e^{z_i} \frac{\partial}{\partial z_j} \left[\frac{1}{\sum_k e^{z_k}} \right] \\ &= \frac{-e^{z_i} e^{z_j}}{(\sum_k e^{z_k})^2} \\ &= -\left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{e^{z_j}}{\sum_k e^{z_k}} \right) \\ &= -\left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \left(\frac{e^{z_i}}{\sum_k e^{z_k}} \right) \\ &= -\mathbf{S}(\mathbf{z})_i \mathbf{S}(\mathbf{z})_j \end{split}$$

Derivative of softmax function

We can use Kronecker's delta function δ_{ij} to represent the derivative of a softmax function in terms of itself as follows

$$\frac{\partial}{\partial z_j} S(\mathbf{z})_i = S(\mathbf{z})_i (\delta_{ij} - S(\mathbf{z})_j)$$

Here

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Softmax classifier

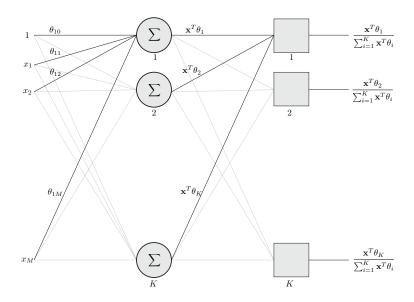
Probability distribution of label y is given by softmax function.

$$h_{\theta_i}(\mathbf{x}) = S(\mathbf{x}^{(i)})_j$$
$$= \frac{e^{\mathbf{x}^T \theta_i}}{\sum_{j=1}^K e^{\mathbf{x}^T \theta_j}}$$

Negative log likelihood for softmax classifier

$$l(\theta) = -\sum_{j=1}^K \mathbf{y}_j^{(i)} \log \mathrm{S}(\mathbf{x}^{(i)})_j$$
 (For i th example)

Softmax classifier (K-classes)



Softmax classifier derivative

Notation change: drop superscript (i) and let $S(\mathbf{x}^{(i)})_j = \pi_j$ for simplicity. Recall that $l \in \{1, \dots, K\}$.

$$\frac{\partial}{\partial \theta_{l}} l(\theta) = \frac{\partial}{\partial \theta_{l}} \left[-\sum_{j=1}^{K} \mathbf{y}_{j} \log \pi_{j} \right] = -\sum_{j=1}^{K} \mathbf{y}_{j} \frac{1}{\pi_{j}} \frac{\partial}{\partial \theta_{l}} \pi_{j}$$

$$= -\frac{\mathbf{y}_{l} (\pi_{l} (1 - \pi_{l}) \mathbf{x})}{\pi_{l}} - \sum_{j \neq l} \frac{\mathbf{y}_{j} (-\pi_{l} \pi_{j} \mathbf{x})}{\pi_{j}}$$

$$= \left(-\mathbf{y}_{l} + \mathbf{y}_{l} \pi_{l} + \sum_{j \neq l} \mathbf{y}_{j} \pi_{l} \right) \mathbf{x}$$

$$= \left(-\mathbf{y}_{l} + \pi_{l} \sum_{j=1}^{K} \mathbf{y}_{j} \right) \mathbf{x}$$

$$= \left(-\mathbf{y}_{l} + \pi_{l} \right) \mathbf{x}$$

Softmax classifier gradient descent

Notation: k here refers to the iteration number for gradient descent. η is the learning rate. $l \in \{1, \cdots, K\}$, where K is the number of classes or distinct values labels can take.

Stochatic gradient descent

$$\begin{aligned} \boldsymbol{\theta}_l^{(k+1)} &= \boldsymbol{\theta}_l^{(k)} - \eta \nabla_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) \\ &= \boldsymbol{\theta}_l^{(k)} + \eta \left(\frac{e^{\mathbf{x}^T \boldsymbol{\theta}_l}}{\sum_{j=1}^K e^{\mathbf{x}^T \boldsymbol{\theta}_j}} - \mathbf{y}_l \right) \mathbf{x} \end{aligned}$$

Cross-entropy

How do we compare the output of a softmax $\hat{\mathbf{y}}^{(i)} \in \mathbb{R}^K$ for the current example $\mathbf{x}^{(i)}$ with the *true* class label of the current example?

- 1. Use one-hot encoding $\mathbf{y}^{(i)}$ for ground truth labels. If the true class label of $\mathbf{x}^{(i)}$ is j then the one hot encoding contains all 0 except at index location j where it stores a 1.
- **2.** Compare $\hat{\mathbf{y}}^{(i)}$ and $\mathbf{y}^{(i)}$ using cross-entropy:

$$\mathsf{Cross\text{-}entropy}(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) = -\sum_{j=1}^K \underbrace{\mathbf{y}_j^{(i)}}_{\mathsf{true}} \log \underbrace{\hat{\mathbf{y}}_j^{(i)}}_{\mathsf{predicted}}$$

Cross-entropy

How do we compare the output of a softmax $\hat{\mathbf{y}}^{(i)} \in \mathbb{R}^K$ for the current example $\mathbf{x}^{(i)}$ with the *true* class label of the current example?

- 1. Use one-hot encoding $\mathbf{y}^{(i)}$ for ground truth labels. If the true class label of $\mathbf{x}^{(i)}$ is j then the one hot encoding contains all 0 except at index location j where it stores a 1.
- **2.** Compare $\hat{\mathbf{y}}^{(i)}$ and $\mathbf{y}^{(i)}$ using cross-entropy:

$$\mathsf{Cross\text{-}entropy}(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) = -\sum_{j=1}^K \underbrace{\mathbf{y}_j^{(i)}}_{\mathsf{true}} \log \underbrace{\hat{\mathbf{y}}_j^{(i)}}_{\mathsf{predicted}}$$

Summary

- ► Multiclass classification
- Multinomial distribution
- ► Softmax classifier

Copyright and License

©Faisal Z. Qureshi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.