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Probabilistic view of linear regression

We now turn our attention to probabilistic view of linear regression.
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Using vector calculus
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Univariate Gaussian distribution

Nalp,?) = ——=exp (=505 = 1))

1 is the center of mass or mean

o2 is the variance

p and o2 are sufficient statistics



Univariate Gaussian distribution

1 is the center of mass or mean

N(z|p, o) =

o2 is the variance

p and o2 are sufficient statistics

Sampling from a Gaussian

z ~N(n,0?)



Multivariate Gaussian distribution

Gaussian distribution in d-dimensions
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x, 11 € R and ¥ € R4

Ex: 2D Gaussian




Covariance

Covariance between two random variables X and Y measures the
degree to which these variables are linearly related.

cov[X, Y] = E[(X — E[X])(Y — E[Y])]
E[X] is the expected value of the random variable X.

E[X] = /xp(:r)dx =p



Covariance matrix X

If x € RY random vector, its covariance matrix Y is defined as
follows:

var[X1]  cov[Xy, Xo] -+ cov[Xi, Xy

cov[Xo, X5]  var[Xo] <o cov[ Xy, Xy
Y = cov[x] = ) , ]

COV[Xd,Xl] COV[Xd,XQ] V&I‘[Xd}



Likelihood example

Consider the points: y1 = 1, yo = 0.5 and y3 = 1.5. The points are
drawn from a Gaussian with unknown mean 6 and o2 = 1.

Points are independent so

P(y1,y2,y3l0) = P(y1]0) P (y210) P (ys|0)

Our goal is to find the Gaussian (i.e., find its mean, since variance is
already given) that maximizes the likelihood of this data.
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Linear regression

Consider data points (1), y(), (3 y@) ... () 4N Our
goal is to learn a function f(x) that returns (predict) the value y
given an x.
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Data points
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Probablistic view of linear regression

Let’s assume that targets y(*) are corrupted by Gaussian noise with
0 mean and o2 variance

y® = (60 + 6129) + N(0,07)
=N (90 + Hlx(i), 02>
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Why assume Gaussian noise?

> Mathematically convenient
» A reasonably accurate assumption in practice
» Central Limit Theorem
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In higher dimensions



The likelihood for linear regression

Under the assumption that each y® is independant and identically
distribtuted (i.i.d.), we can write the likelihood of y given data X as
follows:

N
p(y1X;0,0) = [ p(y"?1x;6,0)
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Aside: the ;" above indicate that we are following the frequentist
approach, and we do not treat # as a random variable. Rather we
view 6 as having some true value that we are trying to estimate.



Probabilistic view of linear regression

Least squares loss

C(0) = (y — X0)" (y — X0)

Probabilistic view

—n/2
p(y|X;0,0) = <2m2) /2 =3k (y—X0)T (y—X0)



Probabilistic view of linear regression

Least squares loss

C(0) = (y — X0)" (y — X0)
Probabilistic view
p(y]X; 0, U) = (2#02) —n/2 e—ﬁ(yfxe)T(yfxa)

Probability of data given parameters is related to the loss for linear
regression that we obtained before.



Maximum Likelihood Estimation (MLE)
Likelihood

p(y!X; 9,0) = (27r02)7n/2 e—ﬁ(y—XO)T(y—xe)
Negative log-likelihood
—n/2
—logp(y|X;0,0) = —log ((27r02) / e—Qiz(y—Xﬁ)T(y—XG))

=2 2y L L Tio _
= 2log (2wa)+20_2(y X0 (y — X0)



Maximum likelihood estimation

The maximum likelihood estimate (MLE) of # is obtained by
maximizing p(y|X; 6, o)

Oy, = argmax p(y|X;6,0)
0

=argmin —logp(y|X;6,0)
0

L (v - X0)%(y — X0)

— in 2\ . -
= argemln 5 log (27m ) + 552

= argmin (y — X0)T (y — X6)
0



Take away

Maximum likelihood estimate Oy,

Onr, = argmin (y — X60)T (y — X6)
0

MSE Loss

For model fitting using maximum likelihood estimate,
minimize MSE loss.



Making predictions using MLE

For a previously unseen data x*, the target y* can be obtained as
follows:

y* o~ N (O x", 0%)



Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two
probability distributions diverge from each other.

Dx1, (pllg) = /p(l‘) log zg;dm

= Epp(a) [log ICZEZZH



Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two
probability distributions diverge from each other.

Dyt (plla) = [ pla)1og Exidx

2]

For discrete probability distributions

Dy, (P||lQ) ZP 8



Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two
probability distributions diverge from each other.

Dyt (plla) = [ pla)1og Exidx

2]

For discrete probability distributions

Dy, (P||lQ) ZP 8

KL divergence is not a measure of distance, since it is not
symmetric

Dy (P|Q) # Dk (Q[|P)



MLE and KL divergence

Consider the setting where we are attempting to fit a distribution
P(z]0) to data that is drawn from some true distrubtion P(x|6%).
One way to do so is to find the parameter # that minimizes the KL
divergence between the two distrubtions.

OminKT, = argemin Dy, [P(x|07)|| P(x]0)]

. P(:vle*)]
arggmln x~P(2]6%) {Og P(ac|9)

= argmin ;. p(5|o+ log P(z|0*)  —log P(z|0)
0 H_/
does not effect minima

= argmin By p|or) [ log P(z[0)]

= arg;nax Ewa(a:|9*) [logp($|9)]

MLE



MLE and KL divergence

It turns out that for i.i.d. (independant, identically distributed) data
from a some (unknown true) distribution MLE minimizes the KL
divergence.



Ridge regression and Bayes rule

Previously we saw the loss function for ridge regression
C) = (y — X0 (y — X0) + 52070
We can cast the above in probabilistic terms

_ 1 (y-x0T(y-x0)
Plulx.0) = e

Then

becomes prior.



Summary

» We developed a probabilistic view of linear regression.
» Maximum likelihood estimation

» Kullback-Leibler divergence

» Relationship between MLE and KL
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