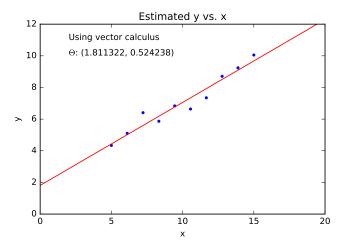
A Maximum-Likelihood View of Linear Regression Computer Vision (CSCI 5520G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Probabilistic view of linear regression

We now turn our attention to probabilistic view of linear regression.



Univariate Gaussian distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

 μ is the center of mass or $\it mean$ σ^2 is the variance μ and σ^2 are sufficient statistics

Univariate Gaussian distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

 μ is the center of mass or $\it mean$ σ^2 is the variance μ and σ^2 are sufficient statistics

Sampling from a Gaussian

$$x \sim \mathcal{N}(\mu, \sigma^2)$$

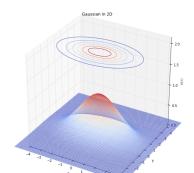
Multivariate Gaussian distribution

Gaussian distribution in d-dimensions

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}} (2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right)$$

 $\mathbf{x}, \mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$

Ex: 2D Gaussian



Covariance

Covariance between two random variables X and Y measures the degree to which these variables are linearly related.

$$cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

 $\mathbb{E}[X]$ is the *expected* value of the random variable X.

$$\mathbb{E}[X] = \int x p(x) dx = \mu$$

Covariance matrix Σ

If $\mathbf{x} \in \mathbb{R}^d$ random vector, its covariance matrix Σ is defined as follows:

$$\Sigma = \operatorname{cov}[\mathbf{x}] = \begin{bmatrix} \operatorname{var}[X_1] & \operatorname{cov}[X_1, X_2] & \cdots & \operatorname{cov}[X_1, X_d] \\ \operatorname{cov}[X_2, X_1] & \operatorname{var}[X_2] & \cdots & \operatorname{cov}[X_2, X_d] \\ \vdots & \vdots & & \vdots \\ \operatorname{cov}[X_d, X_1] & \operatorname{cov}[X_d, X_2] & \cdots & \operatorname{var}[X_d] \end{bmatrix}$$

Likelihood example

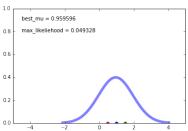
Consider the points: $y_1=1$, $y_2=0.5$ and $y_3=1.5$. The points are drawn from a Gaussian with unknown mean θ and $\sigma^2=1$.

$$y_i \sim \mathcal{N}(\theta, 1)$$
.

Points are independent so

$$P(y_1, y_2, y_3|\theta) = P(y_1|\theta)P(y_2|\theta)P(y_3|\theta)$$

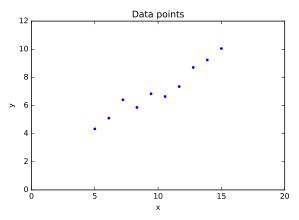
Our goal is to find the Gaussian (i.e., find its mean, since variance is already given) that maximizes the *likelihood* of this data.



From Nando de Freitas

Linear regression

Consider data points $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(N)},y^{(N)})$. Our goal is to learn a function f(x) that returns (predict) the value y given an x.



Probablistic view of linear regression

Let's assume that targets $y^{(i)}$ are corrupted by Gaussian noise with 0 mean and σ^2 variance

$$y^{(i)} = (\theta_0 + \theta_1 x^{(i)}) + \mathcal{N}(0, \sigma^2)$$
$$= \mathcal{N}\left(\theta_0 + \theta_1 x^{(i)}, \sigma^2\right)$$

Probablistic view of linear regression

Let's assume that targets $y^{(i)}$ are corrupted by Gaussian noise with 0 mean and σ^2 variance

$$y^{(i)} = (\theta_0 + \theta_1 x^{(i)}) + \mathcal{N}(0, \sigma^2)$$
$$= \mathcal{N}\left(\theta_0 + \theta_1 x^{(i)}, \sigma^2\right)$$

Why assume Gaussian noise?

- ► Mathematically convenient
- ► A reasonably accurate assumption in practice
- Central Limit Theorem

Probablistic view of linear regression

Let's assume that targets $y^{(i)}$ are corrupted by Gaussian noise with 0 mean and σ^2 variance

$$y^{(i)} = (\theta_0 + \theta_1 x^{(i)}) + \mathcal{N}(0, \sigma^2)$$
$$= \mathcal{N}\left(\theta_0 + \theta_1 x^{(i)}, \sigma^2\right)$$

Why assume Gaussian noise?

- Mathematically convenient
- ▶ A reasonably accurate assumption in practice
- Central Limit Theorem

In higher dimensions

$$y^{(i)} = \mathcal{N}\left(\mathbf{x}^{(i)^T}\boldsymbol{\theta}, \sigma^2\right)$$

The likelihood for linear regression

Under the assumption that each $y^{(i)}$ is independant and identically distributted (i.i.d.), we can write the likelihood of y given data x as follows:

$$p(\mathbf{y}|\mathbf{X};\theta,\sigma) = \prod_{i=1}^{N} p(y^{(i)}|\mathbf{x}^{(i)};\theta,\sigma)$$

$$= \prod_{i=1}^{n} \left(2\pi\sigma^{2}\right)^{-1/2} e^{-\frac{1}{2\sigma^{2}} \left(y^{(i)} - \mathbf{x}^{(i)^{T}}\theta\right)^{2}}$$

$$= \left(2\pi\sigma^{2}\right)^{-n/2} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{x}^{(i)^{T}}\theta\right)^{2}}$$

$$= \left(2\pi\sigma^{2}\right)^{-n/2} e^{-\frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta)}$$

Aside: the ";" above indicate that we are following the *frequentist* approach, and we do not treat θ as a random variable. Rather we view θ as having some true value that we are trying to estimate.

Probabilistic view of linear regression

Least squares loss

$$C(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

Probabilistic view

$$p(\mathbf{y}|\mathbf{X};\theta,\sigma) = \left(2\pi\sigma^2\right)^{-n/2} e^{-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\theta)^T(\mathbf{y} - \mathbf{X}\theta)}$$

Probabilistic view of linear regression

Least squares loss

$$C(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

Probabilistic view

$$p(\mathbf{y}|\mathbf{X};\theta,\sigma) = (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\theta)^T(\mathbf{y}-\mathbf{X}\theta)}$$

Probability of data given parameters is related to the loss for linear regression that we obtained before.

Maximum Likelihood Estimation (MLE)

Likelihood

$$p(\mathbf{y}|\mathbf{X};\theta,\sigma) = (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\theta)^T(\mathbf{y}-\mathbf{X}\theta)}$$

Negative log-likelihood

$$-\log p(\mathbf{y}|\mathbf{X}; \theta, \sigma) = -\log \left(\left(2\pi\sigma^2 \right)^{-n/2} e^{-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)} \right)$$
$$= \frac{n}{2} \log \left(2\pi\sigma^2 \right) + \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

Maximum likelihood estimation

The maximum likelihood estimate (MLE) of θ is obtained by maximizing $p(\mathbf{y}|\mathbf{X};\theta,\sigma)$

$$\begin{aligned} \theta_{\text{ML}} &= \underset{\theta}{\text{arg max}} & p(\mathbf{y}|\mathbf{X}; \theta, \sigma) \\ &= \underset{\theta}{\text{arg min}} & -\log p(\mathbf{y}|\mathbf{X}; \theta, \sigma) \\ &= \underset{\theta}{\text{arg min}} & \frac{n}{2} \log \left(2\pi\sigma^2\right) + \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta) \\ &= \underset{\theta}{\text{arg min}} & (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta) \end{aligned}$$

Take away

Maximum likelihood estimate $heta_{
m ML}$

$$\theta_{\mathrm{ML}} = \operatorname*{arg\,min}_{\theta} \ \underbrace{(\mathbf{y} - \mathbf{X} \theta)^T (\mathbf{y} - \mathbf{X} \theta)}_{\mathsf{MSE} \ \mathsf{Loss}}$$

For model fitting using maximum likelihood estimate, minimize MSE loss.

Making predictions using MLE

For a previously unseen data \mathbf{x}^* , the target y^* can be obtained as follows:

$$y^* \sim \mathcal{N}(\theta_{\mathrm{ML}}^T \mathbf{x}^*, \sigma^2)$$

Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two probability distributions diverge from each other.

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$
$$= \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{q(x)} \right]$$

Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two probability distributions diverge from each other.

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$
$$= \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{q(x)} \right]$$

For discrete probability distributions

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

Kullback-Leibler (KL) divergence

Kullback-Leibler divergence is a measure of how much two probability distributions diverge from each other.

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$
$$= \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{q(x)} \right]$$

For discrete probability distributions

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

KL divergence is **not** a **measure of distance**, since it is not symmetric

$$D_{\mathrm{KL}}\left(P\|Q\right) \neq D_{\mathrm{KL}}\left(Q\|P\right)$$

MLE and KL divergence

Consider the setting where we are attempting to fit a distribution $P(x|\theta)$ to data that is drawn from some true distrubtion $P(x|\theta^*)$. One way to do so is to find the parameter θ that minimizes the KL divergence between the two distrubtions.

$$\begin{split} \theta_{\min \text{KL}} &= \arg\min_{\theta} D_{\text{KL}} \left[P(x|\theta^*) \| P(x|\theta) \right] \\ &= \arg\min_{\theta} \mathbb{E}_{x \sim P(x|\theta^*)} \left[\log \frac{P(x|\theta^*)}{P(x|\theta)} \right] \\ &= \arg\min_{\theta} \mathbb{E}_{x \sim P(x|\theta^*)} \left[\underbrace{\log P(x|\theta^*)}_{\text{does not effect minima}} - \log P(x|\theta) \right] \\ &= \arg\min_{\theta} \mathbb{E}_{x \sim P(x|\theta^*)} \left[-\log P(x|\theta) \right] \\ &= \underbrace{\arg\max_{\theta} \mathbb{E}_{x \sim P(x|\theta^*)} \left[\log P(x|\theta) \right]}_{\text{MLE}} \end{split}$$

MLE and KL divergence

It turns out that for i.i.d. (independant, identically distributed) data from a some (unknown true) distribution MLE minimizes the KL divergence.

Ridge regression and Bayes rule

Previously we saw the loss function for ridge regression

$$C(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta) + \delta^2 \theta^T \theta$$

We can cast the above in probabilistic terms

$$p(y|\mathbf{x}, \theta) = \frac{1}{Z_1} e^{-((\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta))}$$

Then

$$p(\theta) = \frac{1}{Z_2} e^{-\delta^2 \theta^T \theta}$$

becomes prior.

Summary

- ▶ We developed a probabilistic view of linear regression.
- Maximum likelihood estimation
- ► Kullback-Leibler divergence
- Relationship between MLE and KL

Copyright and License

©Faisal Z. Qureshi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.