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Probabilistic view of linear regression
We now turn our attention to probabilistic view of linear regression.
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Univariate Gaussian distribution

N (x|µ, σ2) = 1
σ

√
2π

exp
(

− 1
2σ2 (x − µ)2

)
µ is the center of mass or mean

σ2 is the variance
µ and σ2 are sufficient statistics

Sampling from a Gaussian

x ∼ N (µ, σ2)
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Multivariate Gaussian distribution
Gaussian distribution in d-dimensions

N (x|µ, Σ) = 1
|Σ|

1
2 (2π)

d
2

exp
(

−1
2(x − µ)T Σ−1(x − µ)

)

x, µ ∈ Rd and Σ ∈ Rd×d

Ex: 2D Gaussian
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Covariance
Covariance between two random variables X and Y measures the
degree to which these variables are linearly related.

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]

E[X] is the expected value of the random variable X.

E[X] =
∫

xp(x)dx = µ
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Covariance matrix Σ
If x ∈ Rd random vector, its covariance matrix Σ is defined as
follows:

Σ = cov[x] =


var[X1] cov[X1, X2] · · · cov[X1, Xd]

cov[X2, X1] var[X2] · · · cov[X2, Xd]
... ... ...

cov[Xd, X1] cov[Xd, X2] · · · var[Xd]


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Likelihood example
Consider the points: y1 = 1, y2 = 0.5 and y3 = 1.5. The points are
drawn from a Gaussian with unknown mean θ and σ2 = 1.

yi ∼ N (θ, 1).

Points are independent so
P (y1, y2, y3|θ) = P (y1|θ)P (y2|θ)P (y3|θ)

Our goal is to find the Gaussian (i.e., find its mean, since variance is
already given) that maximizes the likelihood of this data.

From Nando de Freitas
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Linear regression
Consider data points (x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N)). Our
goal is to learn a function f(x) that returns (predict) the value y
given an x.
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Probablistic view of linear regression
Let’s assume that targets y(i) are corrupted by Gaussian noise with
0 mean and σ2 variance

y(i) = (θ0 + θ1x(i)) + N (0, σ2)

= N
(
θ0 + θ1x(i), σ2

)

Why assume Gaussian noise?
▶ Mathematically convenient
▶ A reasonably accurate assumption in practice
▶ Central Limit Theorem

In higher dimensions

y(i) = N
(
x(i)T

θ, σ2
)
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The likelihood for linear regression
Under the assumption that each y(i) is independant and identically
distribtuted (i.i.d.), we can write the likelihood of y given data X as
follows:

p(y|X; θ, σ) =
N∏

i=1
p(y(i)|x(i); θ, σ)

=
n∏

i=1

(
2πσ2

)−1/2
e

− 1
2σ2

(
y(i)−x(i)T

θ

)2

=
(
2πσ2

)−n/2
e

− 1
2σ2

∑n

i=1

(
y(i)−x(i)T

θ

)2

=
(
2πσ2

)−n/2
e− 1

2σ2 (y−Xθ)T (y−Xθ)

Aside: the “;” above indicate that we are following the frequentist
approach, and we do not treat θ as a random variable. Rather we
view θ as having some true value that we are trying to estimate.
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Probabilistic view of linear regression
Least squares loss

C(θ) = (y − Xθ)T (y − Xθ)

Probabilistic view

p(y|X; θ, σ) =
(
2πσ2

)−n/2
e− 1

2σ2 (y−Xθ)T (y−Xθ)

Probability of data given parameters is related to the loss for linear
regression that we obtained before.



15 / 27

Probabilistic view of linear regression
Least squares loss

C(θ) = (y − Xθ)T (y − Xθ)

Probabilistic view

p(y|X; θ, σ) =
(
2πσ2

)−n/2
e− 1

2σ2 (y−Xθ)T (y−Xθ)

Probability of data given parameters is related to the loss for linear
regression that we obtained before.



16 / 27

Maximum Likelihood Estimation (MLE)
Likelihood

p(y|X; θ, σ) =
(
2πσ2

)−n/2
e− 1

2σ2 (y−Xθ)T (y−Xθ)

Negative log-likelihood

− log p(y|X; θ, σ) = − log
((

2πσ2
)−n/2

e− 1
2σ2 (y−Xθ)T (y−Xθ)

)
= n

2 log
(
2πσ2

)
+ 1

2σ2 (y − Xθ)T (y − Xθ)



17 / 27

Maximum likelihood estimation
The maximum likelihood estimate (MLE) of θ is obtained by
maximizing p(y|X; θ, σ)

θML = arg max
θ

p(y|X; θ, σ)

= arg min
θ

− log p(y|X; θ, σ)

= arg min
θ

n

2 log
(
2πσ2

)
+ 1

2σ2 (y − Xθ)T (y − Xθ)

= arg min
θ

(y − Xθ)T (y − Xθ)
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Take away
Maximum likelihood estimate θML

θML = arg min
θ

(y − Xθ)T (y − Xθ)︸ ︷︷ ︸
MSE Loss

For model fitting using maximum likelihood estimate,
minimize MSE loss.
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Making predictions using MLE
For a previously unseen data x∗, the target y∗ can be obtained as
follows:

y∗ ∼ N (θT
MLx∗, σ2)
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Kullback-Leibler (KL) divergence
Kullback-Leibler divergence is a measure of how much two
probability distributions diverge from each other.

DKL (p∥q) =
∫

p(x) log p(x)
q(x)dx

= Ex∼p(x)

[
log p(x)

q(x)

]

For discrete probability distributions

DKL (P∥Q) =
∑

i

P (i) log P (i)
Q(i)

KL divergence is not a measure of distance, since it is not
symmetric

DKL (P∥Q) ̸= DKL (Q∥P )
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MLE and KL divergence
Consider the setting where we are attempting to fit a distribution
P (x|θ) to data that is drawn from some true distrubtion P (x|θ∗).
One way to do so is to find the parameter θ that minimizes the KL
divergence between the two distrubtions.

θminKL = arg min
θ

DKL [P (x|θ∗)∥P (x|θ)]

= arg min
θ

Ex∼P (x|θ∗)

[
log P (x|θ∗)

P (x|θ)

]

= arg min
θ

Ex∼P (x|θ∗)

 log P (x|θ∗)︸ ︷︷ ︸
does not effect minima

− log P (x|θ)


= arg min

θ
Ex∼P (x|θ∗) [− log P (x|θ)]

= arg max
θ

Ex∼P (x|θ∗) [log P (x|θ)]︸ ︷︷ ︸
MLE
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MLE and KL divergence
It turns out that for i.i.d. (independant, identically distributed) data
from a some (unknown true) distribution MLE minimizes the KL
divergence.
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Ridge regression and Bayes rule
Previously we saw the loss function for ridge regression

C(θ) = (y − Xθ)T (y − Xθ) + δ2θT θ

We can cast the above in probabilistic terms

p(y|x, θ) = 1
Z1

e−((y−Xθ)T (y−Xθ))

Then
p(θ) = 1

Z2
e−δ2θT θ

becomes prior.
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Summary
▶ We developed a probabilistic view of linear regression.
▶ Maximum likelihood estimation
▶ Kullback-Leibler divergence
▶ Relationship between MLE and KL
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