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Logistic regression

» Logistic regression is for binary classification
» The target variable y takes on values in {0, 1}
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Binary classification

The goal of binary classification is to learn hy(x), which can be used
to assign a label y € {0,1} to the input x. Label y takes values in
{0, 1}, so we can use Bernoulli distribution to specify its probability
distribution. Specifically

Pr(y =1) = ho(x)
Pr(y =0) =1 — hy(x)
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Binary classification

The goal of binary classification is to learn hy(x), which can be used
to assign a label y € {0,1} to the input x. Label y takes values in
{0, 1}, so we can use Bernoulli distribution to specify its probability
distribution. Specifically

Pr(y = 1) = hy(x)

Pr(y =0) =1— hp(x)

Or more succinctly

Pr(y) = ho(x)? (1 —hg(x))""

active when y=1 active when y=0



Bernoulli distribution

A Bernoulli random variable X takes values in {0, 1}

0 it X =1

1 —60 otherwise

Pr(X16) = {
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Bernoulli distribution

A Bernoulli random variable X takes values in {0, 1}

0 it X =1

1 —60 otherwise

Pr(X|0) = {

=0X(1-0)"¥

Example usage
Bernoulli distribution Ber(X|#) can be used to model coin tosses.



Likelihood for binary classification

Under the assumption that data is independant and identically
distributed (i.e., i.i.d.) the likelihood for the entire data is
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Likelihood for binary classification

Under the assumption that data is independant and identically
distributed (i.e., i.i.d.) the likelihood for the entire data is

N .
Pr(y|X,0) = [T ho(x)*" (1= ho(xD))

i=1

1—y (@)

What form should hy(.) take?



Aside: Mean (Expectation)

» The mean is the “average” or “center of mass” of data.

» Sample mean (finite data):

» Probabilistic definition (random variable X):

Y, P(X =x), if X is discrete
p=EX] =33 ( b X s discr
2o zp(x) de, if X is continuous

> Interpretation: Weighted average of possible values, weighted
by their probabilities.



Aside: Entropy

> Average level of information in a random variable.
» Given a discrete random variable X, which takes values in the
alphabet X and is distributed according to p : X — [0, 1]:

— > p(x)logp(x)

TEX

» Choice of base for log varies with applications
» Base 2 gives the unit of bits or shannons
» Base e gives units of nats
» Base 10 gives units of dits, bans, or hartley

0.5
Pr(X=1)

Figure from https://en.wikipedia.org/wiki/Entropy
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Aside: Cross entropy

» Cross-entropy beween two distributions p and ¢ is a measure of
the average number of bits needed to identify an event from a
set X with true distribution p when the coding scheme used for
the set is optimized for an estimated probability distribution ¢

H(p,q) = — > p(x)logq(x) = —E, ) [log ¢(z)]
rEX



Lets consider a simple 1D case for binary classification
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Sigmoid function

sigm(x) refers to a sigmoid function, also known as the logistic or
logit function.
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Logistic regression

For logistic regression, we set hg(x) = sigm(x” ). So

"o . 1y @
(yX,0) H [ x0T 9] [1 N 1 _|_ex(i)T9]

where

M
x1'0 =6y + Z 0;%;
i=1



Sigmoid function

1

Y 1 -y
1+ e—(0o+017) [

Prlylz,0) = [ R )

» 6 = (6p,0;) are model parameters.

» 6, controls the shift.

» 0, controls the scale (how steep is the slope of the sigmoid
function).




MLE for logistic regression

Likelihood
L(0) = Pr(y[X, 0)

Negative log-likelihood

1(0) = — log L(6)

N
== yDloghg(xD) + (1 = y) log(1 — hy(x?))
=1

We prefer to work in the log domain for mathematical convenience.
Plus there are numerical advantages of working in the log domain.



MLE for logistic regression

Likelihood
L(0) = Pr(y[X, 0)

Negative log-likelihood
1(0) = —log L(6)
= - Z :l/(z) log h@(x(l)) + (1 - ?/(Z)> 1Og(1 - h@(x(l)))Cross entropy for sa
i=1
N

= > — (¥ 10g hy(x?) + (1 — yV) log(1 — hy(x1)))
=1

Cross entropy for sample

For binary classifiers, we need to minimize the negative
log-likelihood, or minimize the cross-entropy between ground
truth and predicted distributions.



MLE for logistic regression
Goal

Our goal is to find parameters § that maximize the likelihood (or
minimize the negative log-likelihood).

0" = argmin ((6)
0



Derivative of sigmoid

—sigm(z) = d_1
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Gradient of a sigmoid w.r.t. ¢

We know that

%Sigm(x) = (1 — sigm(x)) sigm(z)

It follows

d . Tp\ . T s T
@&gm(x 0) = (1 — sigm(x 9)) sigm(x* 0)x



MLE for logistic regression

Negative log likelihood contribution by sample ¢

19(0) = — 4D log hy(x™)
— (1= y9)log(1 — he(x1))



MLE for logistic regression
Negative log likelihood contribution by sample ¢
19(0) = -y log hy (x*)
— (1= y9)log(1 — he(x1))
=—yDlog sigm(x(i)Tﬁ)
— (1 -y ) log(1 — sigm(x)" 9))



MLE for logistic regression
Negative log likelihood contribution by sample ¢
19(0) = — 4y log hy(x)
— (1= y9)log(1 — he(x1))
= — yD logsigm(xV" 9)
— (1 -y ) log(1 — sigm(x)" 9))



MLE for logistic regression
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MLE for logistic regression
Negative log likelihood contribution by sample ¢
19(0) = -y log hy (x*)
— (1= y9)log(1 — he(x1))
=—yDlog sigm(x(i)Tﬁ)
— (1 -y ) log(1 — sigm(x)" 9))

Gradient of 1()(6):
Vol =7



MLE for logistic regression

Notation change

» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =Vj [—ylogs — (1 —y) log(1 — s)]
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MLE for logistic regression

Notation change
» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =V [—ylogs — (1 — y)log(1 — s)]
:_ys(lgs)x _a _y)s(i:ez)x
= — YX + YSX — SX — YSX
= —yx — SX
=—x(y—s)

Therefore (after fixing the notation),

Vol = —xO (50 — py(xD))



MLE for logistic regression

Gradient of [(0) for ith example

Vol = —xO (5@ — py(x))

Stochastic gradient descent rule

o+ — g(k) _ g1
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MLE for logistic regression

Gradient of [(0) for ith example

Vol = —xO (5@ — py(x))

Stochastic gradient descent rule
g+ — gtk) _ 7,1 ()
= 0% x50 — hy(xD))
= 0® 4 px@ (5 — sigm(x?"0)),

where 7 is the learning rate and k refers the the gradient descent
iteration (step).



Logistic regression for binary classification

Given a point x*), classify using the following rule

1 if Pr(y|x™*),0) > 0.5
v 0 otherwise

The decision .
boundary is

x7 = 0. |-
Recall that this is .

where the sigmoid
function is 0.5.




Logistic regression for binary classification

» The decision boundary is x76 = 0
» This is where sigm function is 0.5




Network view of logisitc regression

» By changing the activation function to sigmoid and using the
cross-entropy loss instead the least-squares loss that we use for
linear regression, we are able to perform binary classification.
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Network view of logisitc regression

» By changing the activation function to sigmoid and using the
cross-entropy loss instead the least-squares loss that we use for
linear regression, we are able to perform binary classification.

1

xy

-~ 1
T 14exT0

M
xT0 =00+ x;0;
j=1

Tm

Artificial neuron



Summary

> We looked at logisitc regression, a binary classifier.
» Bernoulli distribution



Summary

> We looked at logisitc regression, a binary classifier.
» Bernoulli distribution
P Linear regression and logistic regression topics provide an

excellent opportunity to study and understand the concepts
underpinning neural networks
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