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Linear Layer
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Linear Layer
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Re-writing in matrix form



Linear Layer
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Y3 = w13T1 + Wazx2

Re-writing in matrix form
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Dealing with Batches
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We can re-use the matrix form from before
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Forward Pass
The forward function for a linear layer is thus defined as
Y =XW
where

> X € RB*dn is the input
> W ¢ Rénxdout js the weight matrix
> Y € RBXdowt is the output

Here B refers to the batch size.
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How would you handle the bias term?



Forward Pass
The forward function for a linear layer is thus defined as
Y =XW
where

> X € RB*dn is the input
> W c R%nxdout js the weight matrix
> Y € RBXdowt is the output

Here B refers to the batch size.

How would you handle the bias term? Append a 1 to each input in
X.



Backpropagation
To backpropagate, we need:

» Gradient w.r.t input: g—g

» Gradient w.r.t weights: %

We assume that we already have g—g. This was backpropagated by

later layers. Here C' denotes loss or cost that we need to minimize
to “train” the network.



Backpropagation
To backpropagate, we need:

- 90X
> Gradient w.r.t weights: 2%,

© OW

» Gradient w.r.t input: 2%

We assume that we already have 80 This was backpropagated by

later layers. Here C' denotes loss or cost that we need to minimize
to “train” the network.

How to compute 3 807

Application of chain-rule yields
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As have 2 BY already. Lets figure out how to compute dX



oC
Structure of 5v

» (' (loss or cost) is a scalar.
> g—g as the same size as Y, i.e. (B X doyt)-



oC
Structure of 5v

» (' (loss or cost) is a scalar.
p 9C

Sy as the same size as Y, i.e. (B X dout).

For the single input case: (x1,x2) — (y1,Y2,Y3)
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oC
Structure of v

» (' (loss or cost) is a scalar.

> gg as the same size as Y, i.e. (B X doyt)-
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Computing %

Lets unpack % We begin by considering a single input

(yl Y2 y3>:(x1 362) i
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Expanding further

Y1 = W11T1 + w212
Y2 = W12T1 + W22X2

Y3 = w13T1 + Wa3x2

This is a vector-valued function of two variables (z1,x2).



Computing %

Setting up the Jacobian (the matrix of all first-order partial
derivatives of a vector-valued function)
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Computing 5% oc

Lets compute and gx(’;



Computing 5% oc

Lets compute and gx(’;
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Computing 5% oc

Lets com pute

Similarly
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Computing 5% oc

Lets compute % an
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Re-writing in matrix form
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Computing 5% oc
Lets compute and gx(’;
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Re-writing in matrix form
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Dealing with batch inputs

Lets consider batch input
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Computing %

Now let's turn our attention to computing gTCv

Recall has the same shape as W
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Computing 5
Applying chain-rule, we have
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Computing %

Applying chain-rule, we have
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Computing 5
Applying chain-rule, we have
o _oc oy
OW  0Y OW
\‘/IJ\\?/‘/



. 9C
Computing Jo

For single input case:

Y1 = W11T1 + W21T2, Y2 = Wi2T1 + W2, and Y3 = wi13x1 + wa3x2

Applying chain-rule, we have
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Computing Jo

For single input case:

Y1 = W11T1 + W21T2, Y2 = Wi2T1 + W2, and Y3 = wi13x1 + wa3x2

Applying chain-rule, we have

aC  9C dy1  AC dys  9C dys

dwiy Oy dwir | dyg dwyy  Dys dwyy

oC
= 7_%1

oy
Simlarly
oc _ oC . oc  _ oC ..
dwiz — Oy2 1" Bwis — dys Ly
oc  _ oC oCc  _ oC oC  _ oC
w1 ~ Oy T 6y2$2' and Owaz 8y3x2



: oC
Computing 5
Putting it all together for single input case
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Computing %

Putting it all together for single input case
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Computing %

For batch input case
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Observations

» By using the backpropagated signal g—g, we are able to

compute g—g’; and g—v(i,.
» We still need to compute % and %

> g—g is backpropagated.

> g—vcv is used to update weights W of this layer.



Useful Properties of Linear Layers

> Global context: Every output depends on every input.
» Information mixing: Inputs are combined to produce outputs.
» Common usage: Often the last layer in many networks.

Activation Functions

This description ignores activation functions, which are usually
applied after linear layers.
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