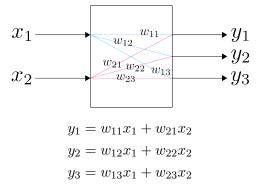
Linear layers Computer Vision (CSCI 5520G)

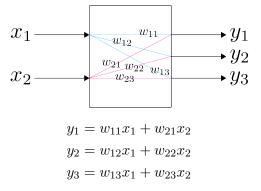
Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Linear Layer

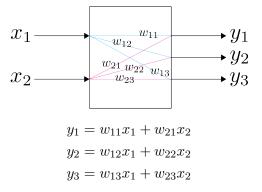


Linear Layer



Re-writing in matrix form

Linear Layer

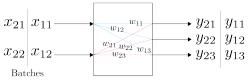


Re-writing in matrix form

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix}$$

1 / 33

Dealing with Batches



We can re-use the matrix form from before

$$\underbrace{\begin{pmatrix} y_1^{(1)} & y_2^{(1)} & y_3^{(1)} \\ y_1^{(2)} & y_2^{(2)} & y_3^{(2)} \end{pmatrix}}_{\mathbf{Y}} = \underbrace{\begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix}}_{\mathbf{W}}$$

Forward Pass

The forward function for a linear layer is thus defined as

$$Y = XW$$

where

- $\mathbf{X} \in \mathbb{R}^{B imes d_{\mathsf{in}}}$ is the input
- $\mathbf{W} \in \mathbb{R}^{d_{\mathsf{in}} imes d_{\mathsf{out}}}$ is the weight matrix
- $\mathbf{Y} \in \mathbb{R}^{B imes d_{\mathsf{out}}}$ is the output

Here B refers to the batch size.

Forward Pass

The forward function for a linear layer is thus defined as

$$Y = XW$$

where

- $ightharpoonup \mathbf{X} \in \mathbb{R}^{B imes d_{ ext{in}}}$ is the input
- $\mathbf{W} \in \mathbb{R}^{d_{\mathsf{in}} imes d_{\mathsf{out}}}$ is the weight matrix
- $\mathbf{Y} \in \mathbb{R}^{B imes d_{\mathsf{out}}}$ is the output

Here B refers to the batch size.

How would you handle the bias term?

Forward Pass

The forward function for a linear layer is thus defined as

$$Y = XW$$

where

- $ightharpoonup \mathbf{X} \in \mathbb{R}^{B imes d_{ ext{in}}}$ is the input
- $\mathbf{W} \in \mathbb{R}^{d_{\mathsf{in}} imes d_{\mathsf{out}}}$ is the weight matrix
- $\mathbf{Y} \in \mathbb{R}^{B imes d_{\mathsf{out}}}$ is the output

Here B refers to the batch size.

How would you handle the bias term? Append a 1 to each input in ${\bf X}$.

Backpropagation

To backpropagate, we need:

► Gradient w.r.t input: $\frac{\partial C}{\partial \mathbf{X}}$ ► Gradient w.r.t weights: $\frac{\partial C}{\partial \mathbf{W}}$

We assume that we already have $\frac{\partial C}{\partial \mathbf{v}}$. This was backpropagated by later layers. Here C denotes loss or cost that we need to minimize to "train" the network.

Backpropagation

To backpropagate, we need:

► Gradient w.r.t input: $\frac{\partial C}{\partial \mathbf{X}}$ ► Gradient w.r.t weights: $\frac{\partial C}{\partial \mathbf{W}}$

We assume that we already have $\frac{\partial C}{\partial \mathbf{v}}$. This was backpropagated by later layers. Here C denotes loss or cost that we need to minimize to "train" the network.

How to compute $\frac{\partial C}{\partial \mathbf{x}}$?

Application of chain-rule yields

$$\frac{\partial C}{\partial \mathbf{X}} = \frac{\partial C}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$$

As have $\frac{\partial C}{\partial \mathbf{Y}}$ already. Lets figure out how to compute $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$.

Structure of $\frac{\partial C}{\partial \mathbf{Y}}$

- ightharpoonup C (loss or cost) is a scalar.
- $ightharpoonup rac{\partial C}{\partial \mathbf{Y}}$ as the same size as \mathbf{Y} , i.e. $(B \times d_{\mathsf{out}})$.

Structure of $\frac{\partial C}{\partial \mathbf{Y}}$

- ► C (loss or cost) is a scalar.
- $ightharpoonup rac{\partial C}{\partial \mathbf{Y}}$ as the same size as \mathbf{Y} , i.e. $(B imes d_{\mathsf{out}}).$

For the **single input** case: $(x_1, x_2) \mapsto (y_1, y_2, y_3)$

$$\frac{\partial C}{\partial \mathbf{Y}} = \begin{pmatrix} \frac{\partial C}{\partial y_1} & \frac{\partial C}{\partial y_2} & \frac{\partial C}{\partial y_3} \end{pmatrix}$$

Structure of $\frac{\partial C}{\partial \mathbf{Y}}$

- C (loss or cost) is a scalar.
- $ightharpoonup rac{\partial C}{\partial \mathbf{Y}}$ as the same size as \mathbf{Y} , i.e. $(B \times d_{\mathsf{out}})$.

For the **batch input** case:
$$\begin{pmatrix} x_1^{(1)}, x_2^{(1)} \\ x_1^{(2)}, x_2^{(2)} \end{pmatrix} \mapsto \begin{pmatrix} y_1^{(1)}, y_2^{(1)}, y_3^{(1)} \\ y_1^{(2)}, y_2^{(2)}, y_3^{(2)} \end{pmatrix}$$

$$\frac{\partial C}{\partial \mathbf{Y}} = \begin{pmatrix} \frac{\partial C}{\partial y_1^{(1)}} & \frac{\partial C}{\partial y_2^{(1)}} & \frac{\partial C}{\partial y_3^{(1)}} \\ \\ \frac{\partial C}{\partial y_1^{(2)}} & \frac{\partial C}{\partial y_2^{(2)}} & \frac{\partial C}{\partial y_3^{(2)}} \end{pmatrix}$$

Computing $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Lets unpack $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$. We begin by considering a **single input**

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix}$$

Expanding further

$$y_1 = w_{11}x_1 + w_{21}x_2$$
$$y_2 = w_{12}x_1 + w_{22}x_2$$
$$y_3 = w_{13}x_1 + w_{23}x_2$$

This is a vector-valued function of two variables (x_1, x_2) .

Computing $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Setting up the Jacobian (the matrix of all first-order partial derivatives of a vector-valued function)

$$\begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} \end{pmatrix} = \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix} = \mathbf{W}^T$$

Lets compute $\frac{\partial C}{\partial x_1}$ and $\frac{\partial C}{\partial x_2}$

Lets compute $\frac{\partial C}{\partial x_1}$ and $\frac{\partial C}{\partial x_2}$

$$\frac{\partial C}{\partial x_1} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_1}$$

Lets compute $\frac{\partial C}{\partial x_1}$ and $\frac{\partial C}{\partial x_2}$

$$\frac{\partial C}{\partial x_1} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_1}$$

Similarly

$$\frac{\partial C}{\partial x_2} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_2} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_2} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_2}$$

Lets compute $\frac{\partial C}{\partial x_1}$ and $\frac{\partial C}{\partial x_2}$

$$\frac{\partial C}{\partial x_1} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_1}$$

Similarly

$$\frac{\partial C}{\partial x_2} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_2} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_2} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_2}$$

Re-writing in matrix form

$$\begin{pmatrix}
\frac{\partial C}{\partial x_1} & \frac{\partial C}{\partial x_2}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial C}{\partial y_1} & \frac{\partial C}{\partial y_2} & \frac{\partial C}{\partial y_3}
\end{pmatrix} \begin{pmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\
\frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2}
\end{pmatrix}$$

Lets compute $\frac{\partial C}{\partial x_1}$ and $\frac{\partial C}{\partial x_2}$

$$\frac{\partial C}{\partial x_1} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_1}$$

Similarly

$$\frac{\partial C}{\partial x_2} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial x_2} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial x_2} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial x_2}$$

Re-writing in matrix form

$$\begin{pmatrix} \frac{\partial C}{\partial x_1} & \frac{\partial C}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial C}{\partial y_1} & \frac{\partial C}{\partial y_2} & \frac{\partial C}{\partial y_3} \end{pmatrix} \underbrace{\begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix}}_{\mathbf{W}^T}$$

Dealing with batch inputs

Lets consider batch input

$$\underbrace{\begin{pmatrix} y_1^{(1)} & y_2^{(1)} & y_3^{(1)} \\ y_1^{(2)} & y_2^{(2)} & y_3^{(2)} \end{pmatrix}}_{\mathbf{Y}} = \underbrace{\begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \end{pmatrix}}_{\mathbf{X}} \underbrace{\begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix}}_{\mathbf{W}}$$

We write

$$\begin{pmatrix} \frac{\partial C}{\partial x_1^{(1)}} & \frac{\partial C}{\partial x_2^{(1)}} \\ \frac{\partial C}{\partial x_1^{(2)}} & \frac{\partial C}{\partial x_2^{(2)}} \end{pmatrix} = \begin{pmatrix} \frac{\partial C}{\partial y_1^{(1)}} & \frac{\partial C}{\partial y_2^{(1)}} & \frac{\partial C}{\partial y_3^{(1)}} \\ \\ \frac{\partial C}{\partial y_1^{(2)}} & \frac{\partial C}{\partial y_2^{(2)}} & \frac{\partial C}{\partial y_3^{(2)}} \end{pmatrix} \mathbf{W}^T$$

Therefore

$$\frac{\partial C}{\partial \mathbf{X}} = \frac{\partial C}{\partial \mathbf{Y}} \mathbf{W}^T$$

Now let's turn our attention to computing $\frac{\partial C}{\partial \mathbf{W}}$.

Recall $\frac{\partial C}{\partial \mathbf{W}}$ has the same shape as \mathbf{W}

$$\frac{\partial C}{\partial \mathbf{W}} = \begin{pmatrix} \frac{\partial C}{\partial w_{11}} & \frac{\partial C}{\partial w_{12}} & \frac{\partial C}{\partial w_{13}} \\ \frac{\partial C}{\partial w_{21}} & \frac{\partial C}{\partial w_{22}} & \frac{\partial C}{\partial w_{23}} \end{pmatrix}$$

$$\frac{\partial C}{\partial \mathbf{W}} = \frac{\partial C}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{W}}$$

$$\frac{\partial C}{\partial \mathbf{W}} = \underbrace{\frac{\partial C}{\partial \mathbf{Y}}}_{\sqrt{}} \frac{\partial \mathbf{Y}}{\partial \mathbf{W}}$$

$$\frac{\partial C}{\partial \mathbf{W}} = \underbrace{\frac{\partial C}{\partial \mathbf{Y}}}_{?} \underbrace{\frac{\partial \mathbf{Y}}{\partial \mathbf{W}}}_{?}$$

Computing $\frac{\partial C}{\partial w_{11}}, \cdots$

For **single input** case:

$$y_1 = w_{11}x_1 + w_{21}x_2$$
, $y_2 = w_{12}x_1 + w_{22}x_2$, and $y_3 = w_{13}x_1 + w_{23}x_2$

$$\frac{\partial C}{\partial w_{11}} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial w_{11}} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial w_{11}} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial w_{11}}$$
$$= \frac{\partial C}{\partial y_1} x_1$$

Computing $\frac{\partial C}{\partial w_{11}}, \cdots$

For **single input** case:

$$y_1 = w_{11}x_1 + w_{21}x_2$$
, $y_2 = w_{12}x_1 + w_{22}x_2$, and $y_3 = w_{13}x_1 + w_{23}x_2$

Applying chain-rule, we have

$$\frac{\partial C}{\partial w_{11}} = \frac{\partial C}{\partial y_1} \frac{\partial y_1}{\partial w_{11}} + \frac{\partial C}{\partial y_2} \frac{\partial y_2}{\partial w_{11}} + \frac{\partial C}{\partial y_3} \frac{\partial y_3}{\partial w_{11}}$$
$$= \frac{\partial C}{\partial y_1} x_1$$

Simlarly

$$\begin{array}{l} \frac{\partial C}{\partial w_{12}} = \frac{\partial C}{\partial y_2} x_1, \ \frac{\partial C}{\partial w_{13}} = \frac{\partial C}{\partial y_3} x_1, \\ \\ \frac{\partial C}{\partial w_{21}} = \frac{\partial C}{\partial y_1} x_2, \ \frac{\partial C}{\partial w_{22}} = \frac{\partial C}{\partial y_2} x_2, \ \text{and} \ \frac{\partial C}{\partial w_{23}} = \frac{\partial C}{\partial y_3} x_2 \end{array}$$

Putting it all together for single input case

$$\frac{\partial C}{\partial \mathbf{W}} = \begin{pmatrix} \frac{\partial C}{\partial w_{11}} & \frac{\partial C}{\partial w_{12}} & \frac{\partial C}{\partial w_{13}} \\ \frac{\partial C}{\partial w_{21}} & \frac{\partial C}{\partial w_{22}} & \frac{\partial C}{\partial w_{23}} \end{pmatrix} \\
= \begin{pmatrix} \frac{\partial C}{\partial y_1} x_1 & \frac{\partial C}{\partial y_2} x_1 & \frac{\partial C}{\partial y_3} x_1 \\ \frac{\partial C}{\partial y_1} x_2 & \frac{\partial C}{\partial y_2} x_2 & \frac{\partial C}{\partial y_3} x_2 \end{pmatrix} \\
= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} \frac{\partial C}{\partial y_1} & \frac{\partial C}{\partial y_2} & \frac{\partial C}{\partial y_3} \end{pmatrix}$$

Putting it all together for single input case

$$\frac{\partial C}{\partial \mathbf{W}} = \begin{pmatrix} \frac{\partial C}{\partial w_{11}} & \frac{\partial C}{\partial w_{12}} & \frac{\partial C}{\partial w_{13}} \\ \frac{\partial C}{\partial w_{21}} & \frac{\partial C}{\partial w_{22}} & \frac{\partial C}{\partial w_{23}} \end{pmatrix} \\
= \begin{pmatrix} \frac{\partial C}{\partial y_1} x_1 & \frac{\partial C}{\partial y_2} x_1 & \frac{\partial C}{\partial y_3} x_1 \\ \frac{\partial C}{\partial y_1} x_2 & \frac{\partial C}{\partial y_2} x_2 & \frac{\partial C}{\partial y_3} x_2 \end{pmatrix} \\
= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \underbrace{\begin{pmatrix} \frac{\partial C}{\partial y_1} & \frac{\partial C}{\partial y_2} & \frac{\partial C}{\partial y_3} \\ \frac{\partial C}{\partial Y} & \frac{\partial C}{\partial Y} \end{pmatrix}}_{\frac{\partial C}{\partial Y}}$$

For batch input case

$$\frac{\partial C}{\partial \mathbf{W}} = \underbrace{\begin{pmatrix} x_1^{(1)} & x_1^{(2)} \\ x_1^{(1)} & x_2^{(2)} \end{pmatrix}}_{\mathbf{X}^T} \begin{pmatrix} \frac{\partial C}{\partial y_1^{(1)}} & \frac{\partial C}{\partial y_2^{(1)}} & \frac{\partial C}{\partial y_3^{(1)}} \\ \frac{\partial C}{\partial y_1^{(2)}} & \frac{\partial C}{\partial y_2^{(2)}} & \frac{\partial C}{\partial y_3^{(2)}} \end{pmatrix}$$

Or more generally, we write

$$\frac{\partial C}{\partial \mathbf{W}} = \mathbf{X}^T \frac{\partial C}{\partial \mathbf{Y}}$$

Observations

- ▶ By using the *backpropagated* signal $\frac{\partial C}{\partial \mathbf{Y}}$, we are able to compute $\frac{\partial C}{\partial \mathbf{X}}$ and $\frac{\partial C}{\partial \mathbf{W}}$.
 - ▶ We still need to compute $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$ and $\frac{\partial \mathbf{Y}}{\partial \mathbf{W}}$
- $ightharpoonup rac{\partial C}{\partial \mathbf{X}}$ is backpropagated.
- $ightharpoonup rac{\partial C}{\partial \mathbf{W}}$ is used to update weights \mathbf{W} of this layer.

Useful Properties of Linear Layers

- ▶ **Global context**: Every output depends on every input.
- ▶ **Information mixing**: Inputs are combined to produce outputs.
- ▶ **Common usage**: Often the last layer in many networks.

Activation Functions

This description **ignores activation functions**, which are usually applied after linear layers.

Copyright and License

©Faisal Z. Qureshi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.