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Linear Layer

y1 = w11x1 + w21x2

y2 = w12x1 + w22x2

y3 = w13x1 + w23x2

Re-writing in matrix form

(
y1 y2 y3

)
=
(
x1 x2

)(w11 w12 w13
w21 w22 w23

)
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Dealing with Batches

We can re-use the matrix form from before

(
y

(1)
1 y

(1)
2 y

(1)
3

y
(2)
1 y

(2)
2 y

(2)
3

)
︸ ︷︷ ︸

Y

=
(

x
(1)
1 x

(1)
2

x
(2)
1 x

(2)
2

)
︸ ︷︷ ︸

X

(
w11 w12 w13
w21 w22 w23

)
︸ ︷︷ ︸

W
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Forward Pass
The forward function for a linear layer is thus defined as

Y = XW

where

▶ X ∈ RB×din is the input
▶ W ∈ Rdin×dout is the weight matrix
▶ Y ∈ RB×dout is the output

Here B refers to the batch size.

How would you handle the bias term? Append a 1 to each input in
X.
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Backpropagation
To backpropagate, we need:

▶ Gradient w.r.t input: ∂C
∂X

▶ Gradient w.r.t weights: ∂C
∂W

We assume that we already have ∂C
∂Y . This was backpropagated by

later layers. Here C denotes loss or cost that we need to minimize
to “train” the network.

How to compute ∂C
∂X?

Application of chain-rule yields

∂C

∂X = ∂C

∂Y
∂Y
∂X

As have ∂C
∂Y already. Lets figure out how to compute ∂Y

∂X .
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Structure of ∂C
∂Y

▶ C (loss or cost) is a scalar.
▶ ∂C

∂Y as the same size as Y, i.e. (B × dout).

For the single input case: (x1, x2) 7→ (y1, y2, y3)

∂C

∂Y =
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)
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Structure of ∂C
∂Y

▶ C (loss or cost) is a scalar.
▶ ∂C

∂Y as the same size as Y, i.e. (B × dout).

For the batch input case:
(

x
(1)
1 , x

(1)
2

x
(2)
1 , x

(2)
2

)
7→
(

y
(1)
1 , y

(1)
2 , y

(1)
3

y
(2)
1 , y

(2)
2 , y

(2)
3

)

∂C

∂Y =


∂C

∂y
(1)
1

∂C

∂y
(1)
2

∂C

∂y
(1)
3

∂C

∂y
(2)
1

∂C

∂y
(2)
2

∂C

∂y
(2)
3


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Computing ∂Y
∂X

Lets unpack ∂Y
∂X . We begin by considering a single input

(
y1 y2 y3

)
=
(
x1 x2

)(w11 w12 w13
w21 w22 w23

)

Expanding further

y1 = w11x1 + w21x2

y2 = w12x1 + w22x2

y3 = w13x1 + w23x2

This is a vector-valued function of two variables (x1, x2).
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Computing ∂Y
∂X

Setting up the Jacobian (the matrix of all first-order partial
derivatives of a vector-valued function)



∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∂y3
∂x1

∂y3
∂x2

 =


w11 w21

w12 w22

w13 w23

 = WT
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Computing ∂C
∂X

Lets compute ∂C
∂x1

and ∂C
∂x2

∂C

∂x1
= ∂C

∂y1

∂y1
∂x1

+ ∂C

∂y2

∂y2
∂x1

+ ∂C

∂y3

∂y3
∂x1

Similarly
∂C

∂x2
= ∂C

∂y1

∂y1
∂x2

+ ∂C

∂y2

∂y2
∂x2

+ ∂C

∂y3

∂y3
∂x2

Re-writing in matrix form

(
∂C
∂x1

∂C
∂x2

)
=
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∂y3
∂x1

∂y3
∂x2


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∂x1
= ∂C

∂y1

∂y1
∂x1

+ ∂C

∂y2

∂y2
∂x1

+ ∂C

∂y3

∂y3
∂x1

Similarly
∂C

∂x2
= ∂C

∂y1

∂y1
∂x2

+ ∂C

∂y2

∂y2
∂x2

+ ∂C

∂y3

∂y3
∂x2

Re-writing in matrix form

(
∂C
∂x1

∂C
∂x2

)
=
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∂y3
∂x1

∂y3
∂x2


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∂x1

and ∂C
∂x2

∂C

∂x1
= ∂C

∂y1

∂y1
∂x1

+ ∂C

∂y2

∂y2
∂x1

+ ∂C

∂y3

∂y3
∂x1

Similarly
∂C

∂x2
= ∂C

∂y1

∂y1
∂x2

+ ∂C

∂y2

∂y2
∂x2

+ ∂C

∂y3

∂y3
∂x2

Re-writing in matrix form

(
∂C
∂x1

∂C
∂x2

)
=
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∂y3
∂x1

∂y3
∂x2


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Computing ∂C
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∂C

∂x1
= ∂C

∂y1

∂y1
∂x1

+ ∂C

∂y2

∂y2
∂x1

+ ∂C

∂y3

∂y3
∂x1

Similarly
∂C

∂x2
= ∂C

∂y1

∂y1
∂x2

+ ∂C

∂y2

∂y2
∂x2

+ ∂C

∂y3

∂y3
∂x2

Re-writing in matrix form

(
∂C
∂x1

∂C
∂x2

)
=
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∂y3
∂x1

∂y3
∂x2


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Computing ∂C
∂X

Lets compute ∂C
∂x1

and ∂C
∂x2

∂C

∂x1
= ∂C

∂y1

∂y1
∂x1

+ ∂C

∂y2

∂y2
∂x1

+ ∂C

∂y3

∂y3
∂x1

Similarly
∂C

∂x2
= ∂C

∂y1

∂y1
∂x2

+ ∂C

∂y2

∂y2
∂x2

+ ∂C

∂y3

∂y3
∂x2

Re-writing in matrix form

(
∂C
∂x1

∂C
∂x2

)
=
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)


w11 w21

w12 w22

w13 w23


︸ ︷︷ ︸

WT
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Dealing with batch inputs
Lets consider batch input(

y
(1)
1 y

(1)
2 y

(1)
3

y
(2)
1 y

(2)
2 y

(2)
3

)
︸ ︷︷ ︸

Y

=
(

x
(1)
1 x

(1)
2

x
(2)
1 x

(2)
2

)
︸ ︷︷ ︸

X

(
w11 w12 w13
w21 w22 w23

)
︸ ︷︷ ︸

W

We write


∂C

∂x
(1)
1

∂C

∂x
(1)
2

∂C

∂x
(2)
1

∂C

∂x
(2)
2

 =


∂C

∂y
(1)
1

∂C

∂y
(1)
2

∂C

∂y
(1)
3

∂C

∂y
(2)
1

∂C

∂y
(2)
2

∂C

∂y
(2)
3

WT

Therefore
∂C

∂X = ∂C

∂YWT
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Computing ∂C
∂W

Now let’s turn our attention to computing ∂C
∂W .

Recall ∂C
∂W has the same shape as W

∂C

∂W =


∂C

∂w11
∂C

∂w12
∂C

∂w13

∂C
∂w21

∂C
∂w22

∂C
∂w23


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Computing ∂C
∂W

Applying chain-rule, we have

∂C

∂W = ∂C

∂Y
∂Y
∂W
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Computing ∂C
∂W

Applying chain-rule, we have

∂C

∂W = ∂C

∂Y︸︷︷︸
✓

∂Y
∂W
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Computing ∂C
∂W

Applying chain-rule, we have

∂C

∂W = ∂C

∂Y︸︷︷︸
✓

∂Y
∂W︸ ︷︷ ︸

?
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Computing ∂C
∂w11

, · · ·
For single input case:
y1 = w11x1 + w21x2, y2 = w12x1 + w22x2, and y3 = w13x1 + w23x2

Applying chain-rule, we have

∂C

∂w11
= ∂C

∂y1

∂y1
∂w11

+ ∂C

∂y2

∂y2
∂w11

+ ∂C

∂y3

∂y3
∂w11

= ∂C

∂y1
x1

Simlarly
∂C

∂w12
= ∂C

∂y2
x1, ∂C

∂w13
= ∂C

∂y3
x1,

∂C
∂w21

= ∂C
∂y1

x2, ∂C
∂w22

= ∂C
∂y2

x2, and ∂C
∂w23

= ∂C
∂y3

x2
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Computing ∂C
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, · · ·
For single input case:
y1 = w11x1 + w21x2, y2 = w12x1 + w22x2, and y3 = w13x1 + w23x2

Applying chain-rule, we have

∂C

∂w11
= ∂C

∂y1

∂y1
∂w11

+ ∂C

∂y2

∂y2
∂w11

+ ∂C

∂y3

∂y3
∂w11

= ∂C

∂y1
x1

Simlarly
∂C

∂w12
= ∂C

∂y2
x1, ∂C

∂w13
= ∂C

∂y3
x1,

∂C
∂w21

= ∂C
∂y1

x2, ∂C
∂w22

= ∂C
∂y2

x2, and ∂C
∂w23

= ∂C
∂y3

x2
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Computing ∂C
∂W

Putting it all together for single input case

∂C

∂W =


∂C

∂w11
∂C

∂w12
∂C

∂w13

∂C
∂w21

∂C
∂w22

∂C
∂w23



=


∂C
∂y1

x1
∂C
∂y2

x1
∂C
∂y3

x1

∂C
∂y1

x2
∂C
∂y2

x2
∂C
∂y3

x2


=
(

x1
x2

)(
∂C
∂y1

∂C
∂y2

∂C
∂y3

)
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Computing ∂C
∂W

Putting it all together for single input case

∂C

∂W =


∂C

∂w11
∂C

∂w12
∂C

∂w13

∂C
∂w21

∂C
∂w22

∂C
∂w23



=


∂C
∂y1

x1
∂C
∂y2

x1
∂C
∂y3

x1

∂C
∂y1

x2
∂C
∂y2

x2
∂C
∂y3

x2


=
(

x1
x2

)
︸ ︷︷ ︸

XT

(
∂C
∂y1

∂C
∂y2

∂C
∂y3

)
︸ ︷︷ ︸

∂C
∂Y
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Computing ∂C
∂W

For batch input case

∂C

∂W =
(

x
(1)
1 x

(2)
1

x
(1)
2 x

(2)
2

)
︸ ︷︷ ︸

XT


∂C

∂y
(1)
1

∂C

∂y
(1)
2

∂C

∂y
(1)
3

∂C

∂y
(2)
1

∂C

∂y
(2)
2

∂C

∂y
(2)
3



Or more generally, we write

∂C

∂W = XT ∂C

∂Y
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Observations
▶ By using the backpropagated signal ∂C

∂Y , we are able to
compute ∂C

∂X and ∂C
∂W .

▶ We still need to compute ∂Y
∂X and ∂Y

∂W

▶ ∂C
∂X is backpropagated.

▶ ∂C
∂W is used to update weights W of this layer.
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Useful Properties of Linear Layers
▶ Global context: Every output depends on every input.
▶ Information mixing: Inputs are combined to produce outputs.
▶ Common usage: Often the last layer in many networks.

Activation Functions

This description ignores activation functions, which are usually
applied after linear layers.
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