
1 / 55

Convolutional Neural Networks
Computer Vision (CSCI 5520G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 55

Lesson Plan
▶ Convolutional Networks
▶ Convolution
▶ Pooling layers
▶ Dilated convolutions
▶ Common architecture

▶ GoogLeNet
▶ ResNet
▶ Densenet
▶ Squeeze-and-Excitation network

▶ ConvNext

3 / 55

Classical neural networks for computer vision tasks

▶ Q. How many paramters per
hidden layer unit?

▶ Computational issues
▶ Poor performance

▶ The model is prone to
overfitting

▶ Model capacity issues

4 / 55

Convolutional neural networks
David Hubel and Torsten Wiesel studied cat visual cortex and
showed that visual information goes through a series of processing
steps (Hubeland Wiesel, 1959):

▶ edge detection;
▶ edge combination; and
▶ motion perception; etc.

This suggests

▶ Neurons are spatially localized
▶ Topographic feature maps
▶ Hierarchical feature processing

Convolutional layers achieve these properties

5 / 55

Convolutional neural networks
David Hubel and Torsten Wiesel studied cat visual cortex and
showed that visual information goes through a series of processing
steps (Hubeland Wiesel, 1959):

▶ edge detection;
▶ edge combination; and
▶ motion perception; etc.

This suggests

▶ Neurons are spatially localized
▶ Topographic feature maps
▶ Hierarchical feature processing

Convolutional layers achieve these properties

6 / 55

Convolutional neural networks
David Hubel and Torsten Wiesel studied cat visual cortex and
showed that visual information goes through a series of processing
steps (Hubeland Wiesel, 1959):

▶ edge detection;
▶ edge combination; and
▶ motion perception; etc.

This suggests

▶ Neurons are spatially localized
▶ Topographic feature maps
▶ Hierarchical feature processing

Convolutional layers achieve these properties

7 / 55

Convolutional layers
▶ Each output unit is a linear function of a localized subset of

input units
▶ Same linear transformation is applied at each location
▶ Local features detection is translation invariant

8 / 55

Convolutions in 1D

Signal (x): (x0, · · · , xn−1) ∈ Rn

Kernel or filter (w): (w−l, · · · , , wl) ∈ R2l+1

Output value at location j:

yi =
l∑

i′=−l

wi′xi−i′

The entire process is represented as y = x ∗ w

9 / 55

Convolutions vs. Cross-Correlation
Convolution

yi =
l∑

i′=−l

wi′xi − i′︸ ︷︷ ︸
flipped

Cross-correlation

yi =
l∑

i′=−l

wi′x i + i′︸ ︷︷ ︸
not flipped

▶ Mathematical convolution flips the kernel; cross-correlation
does not.

▶ Deep learning libraries typically implement cross-correlation,
relying on learning to absorb the flip.

10 / 55

Stride, Padding, and Dilation
Stride s: number of positions we shift the kernel each step.

Padding p: number of zeros (or other values) added at boundaries.

Dilation d: increasing the input field for the kernel. Dilated
convolutions are sometimes called atrous convolutions. (From
French ‘\{a} trous” meaning with holes.)

11 / 55

Size of the output
For 1D, output length:

Lout =

Lin + 2p −
effective kernel size︷ ︸︸ ︷
(d (K − 1) + 1)

s

 + 1

where p, s, and d refers to padding, stride, and dilation, respectively.
K = 2l + 1 is the length of the kernel and Lin is the length of the
input signal.

12 / 55

Convolutions in Higher Dimensions

i, j and c index over input
x height, width, and
channels.
i′, j′ and c′ index over
filter w height, width, and
channels.
Filter w creates output
channel coutput

yij,coutput =
∑
i′

∑
j′

∑
c′

wi′ j′ c′xi−i′ j−j′ c−c′

How do we extend this to deal with the situation when the output
has more than one channels? Use one kernel per output channel.

13 / 55

Convolutions in Higher Dimensions

i, j and c index over input
x height, width, and
channels.
i′, j′ and c′ index over
filter w height, width, and
channels.
Filter w creates output
channel coutput

yij,coutput =
∑
i′

∑
j′

∑
c′

wi′ j′ c′xi−i′ j−j′ c−c′

How do we extend this to deal with the situation when the output
has more than one channels?

Use one kernel per output channel.

14 / 55

Convolutions in Higher Dimensions

i, j and c index over input
x height, width, and
channels.
i′, j′ and c′ index over
filter w height, width, and
channels.
Filter w creates output
channel coutput

yij,coutput =
∑
i′

∑
j′

∑
c′

wi′ j′ c′xi−i′ j−j′ c−c′

How do we extend this to deal with the situation when the output
has more than one channels? Use one kernel per output channel.

15 / 55

Number of Parameters
Consider a convolutional layer that takes an input feature map of
size H × W × C and create an output feature map of size
H ′ × W ′ × C ′. The convolutional layer uses an h × w filter. Write
down the number of parameters for this convolutional layer.

Answer

((h × w︸ ︷︷ ︸
height and width

)(C︸︷︷︸
input channels

) + 1︸︷︷︸
bias

)(C ′︸︷︷︸
output channels

)

16 / 55

Number of Parameters
Consider a convolutional layer that takes an input feature map of
size H × W × C and create an output feature map of size
H ′ × W ′ × C ′. The convolutional layer uses an h × w filter. Write
down the number of parameters for this convolutional layer.
Answer

((h × w︸ ︷︷ ︸
height and width

)(C︸︷︷︸
input channels

) + 1︸︷︷︸
bias

)(C ′︸︷︷︸
output channels

)

17 / 55

Depth-wise (channel-wise) Convolutions
Take an H × W × C input feature finput and map it to an
H ′ × W ′ × C feature foutput such that each output channel
coutput = cinput ∗ w, where cinput is the corresponding input channel
and w is a 2D convolutional filter. E.g., output channel 2 depends
only upon input channel 2. ∗ denotes the convolutional operator.

18 / 55

Point-wise (1 × 1) Convolutions
Take a H × W × C input feature finput and map it to a
H × W × C ′ output feature foutput such that each location
foutput = [i, j, coutput] = wcoutput · finput[i, j]. Here · refers to dot
product. coutput ∈ [1, C ′].

19 / 55

Depth-wise Separable Convolutions
Depth-wise convolution (per channel spatial filter) +
point-wise (1 × 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H × W × C and create an output feature map of size
H ′ × W ′ × C ′. The convolutional layer uses C h × w filters
followed by C ′ point-wise filters. Write down the number of
parameters for this convolutional layer.

Answer
((h × w + 1)(C))︸ ︷︷ ︸

depth-wise

+ (C × C ′)︸ ︷︷ ︸
point-wise

Depth-wise and point-wise convolutions are combined to
cutdown on parameters and computation.

20 / 55

Depth-wise Separable Convolutions
Depth-wise convolution (per channel spatial filter) +
point-wise (1 × 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H × W × C and create an output feature map of size
H ′ × W ′ × C ′. The convolutional layer uses C h × w filters
followed by C ′ point-wise filters. Write down the number of
parameters for this convolutional layer.
Answer

((h × w + 1)(C))︸ ︷︷ ︸
depth-wise

+ (C × C ′)︸ ︷︷ ︸
point-wise

Depth-wise and point-wise convolutions are combined to
cutdown on parameters and computation.

21 / 55

Depth-wise Separable Convolutions
Depth-wise convolution (per channel spatial filter) +
point-wise (1 × 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H × W × C and create an output feature map of size
H ′ × W ′ × C ′. The convolutional layer uses C h × w filters
followed by C ′ point-wise filters. Write down the number of
parameters for this convolutional layer.
Answer

((h × w + 1)(C))︸ ︷︷ ︸
depth-wise

+ (C × C ′)︸ ︷︷ ︸
point-wise

Depth-wise and point-wise convolutions are combined to
cutdown on parameters and computation.

22 / 55

Convolutional neural network
▶ Convolutional layers provide architectural constraints
▶ Number of parameters depend upon kernel sizes and not the

size of the input
▶ Inductive bias

▶ Architectural constraints
▶ Image augmentation
▶ Regularization

23 / 55

LeNet (classifying digits, LeCun 1988)

▶ The first few layers are convolution layers, and the last few
layers are fully connected layers
▶ Convolutional layers construct image features that are

subsequently processed by fully connected layers for the
purposes of digit classifisation

▶ The convolutional layers are compute heavy, but have fewer
parameters

▶ The fully connected layer have far more parameters, but these
are easy to compute

24 / 55

General idea
▶ Generally speaking we can interpret convolutional deep

networks as composed of two parts: 1) a (latent) feature
extractor and 2) task head.

▶ Feature extractor learns to construct powerful representations
given an input. These representations are well-suited to the
task at hand.
▶ Feature extractor is often composed of convolution layers

25 / 55

GoogLeNet

▶ Szegedy et al. 2014
Going Deeper with Con-
volutions

▶ Multiple feed-forward passes
▶ Inception module

▶ An inception module aims
to approximate local
sparse structure in a CNN
by using filters of different
sizes (within the same
block) whose output is
concatenated and passed
on to the next stage

https://arxiv.org/abs/1409.4842

26 / 55

Inception layer
▶ Acts as a bottleneck layer
▶ 1-by-1 convolutional layers are used to reduce feature channels
▶ Inception layer (simplified). Each conv is followed by a

non-linear activation.

27 / 55

ResNet
▶ He et al. 2016

Deep Residual Learning
for Image Recognition

Figure on the right
Left: the VGG-19 model (19.6
billion FLOPs) as a reference.
Middle: a plain network with 34
parameter layers (3.6 billion
FLOPs). Right: a residual
network with 34 parameter layers
(3.6 billion FLOPs). The dotted
shortcuts increase dimensions.
Figure from He et al. 2016.

https://arxiv.org/abs/1512.03385

28 / 55

Residual unit

▶ Pass through connections
adds the input of a layer to
its output

▶ Deeper models are harder to
train

▶ Learn residual function
rather than direct mapping

29 / 55

Loss landscape with residual units
Notice the loss landscape with and without residual connections

Figure taken from K. Derpanis notes on deep learning.

30 / 55

Densenet
▶ Huang et al. 2017 > Densely Connected Convolutional

Networks

Figure from Huang et al. 2017.

https://arxiv.org/abs/1608.06993

31 / 55

Densenet
▶ Feature-maps learned by any of the layers can be accessed by

all subsequent layers.
▶ Encourages feature reuse throughout the network
▶ Leads to more compact models
▶ Supports diversified depth

▶ Improved training
▶ Individual layers get additional supervision from loss function

through shorter (more direct) connections
▶ Similar to DSN (Lee et al. 2015) that attach classifiers to each

hidden layer forcing intermediate layers to learn discriminative
features

▶ Scale to hundreds of layers without any optimization difficulties

32 / 55

Dense blocks and transition layers

Figure from Huang et al. 2017

33 / 55

Densenet vs. Resnet

Figure from Huang et al. 2017

34 / 55

Squeeze-and-Excitation Networks
▶ Hu et al. 2018

Squeeze-and-Excitation Networks

Figure from Hu et al. 2018

https://arxiv.org/abs/1709.01507

35 / 55

SE Block
▶ Squeeze operator

▶ Allows global information to be used when computing
channel-wise weights

▶ Excitation operator
▶ Distribution across different classes is similar in early layers,

suggesting that feature channels are “equally important” for
different classes in early layers

▶ Distribution becomes class-specific in deeper layers
▶ SE blocks may be used for model prunning and network

compression

Squeeze-and-Excitation block (simplified).

36 / 55

SE Performance

Taken from Hu et al. 2018

37 / 55

Spatial attention
▶ SE computes channel weights; however, we can easily extend

this idea to compute spatial weights to model some notion of
spatial attention
▶ The model will pay more attention to f

38 / 55

Other notable examples
▶ Larsson et al., 2016

FractalNet: Ultra-Deep Neural Networks without Residuals

▶ Iandola et al., 2016
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Pa-
rameters and <0.5MB Model Size

▶ Howard et al., 2017
MobileNet: Efficient Convolutional Neural Networks for
Mobile Vision Applications

http://people.cs.uchicago.edu/~larsson/fractalnet/
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861

39 / 55

Other notable examples
▶ Xie et al., 2017

Aggregated Residual Transformation for Deep Neural Net-
works

▶ Han et al., 2016
Deep Pyramidal Residual Networks

▶ Chollet, 2017
Xception: Deep Learning with Depthwise Separable Con-
volutions

https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1610.02915
https://arxiv.org/abs/1610.02357

40 / 55

Transformers (2017)
▶ Vaswani et al., 2017

Attention Is All You
Need

▶ Transformers use
attention-based computation.

▶ These models are popular in
Natural Language Processing
community.

▶ GPT3 language model also
uses attention-based
computation and it has
roughly 175 billion
parameters.

https://arxiv.org/abs/1706.03762

41 / 55

Attention
▶ Zhao et al., 2020

Exploring Self-attention for Image Recognition

▶ Carion et al., 2020
End-to-End Object Detection with Transformers

▶ Dosovitsky et al., 2020
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale

▶ Zheng et al., 2020
Rethinking Semantic Segmentation from a Sequence-to-
Sequence Perspective with Transformers

https://arxiv.org/abs/2004.13621
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2012.15840

42 / 55

Learning convolution kernels
▶ CNNs benefit from different kernel sizes at different layers
▶ Exploring all possible combinations of kernel sizes is infeasible

in practice
▶ Romero et al. 2022

FlexConv: Continuous Kernel Convolutions with Differen-
tiable Kernel Sizes

▶ Riad et al. 2022
Learning Strides in Convolutional Neural Networks

https://arxiv.org/abs/2110.08059
https://arxiv.org/abs/2202.01653

43 / 55

MLPs
▶ Tolstikhin et al. 2021

MLP-Mixer: An all-MLP Architecture for Vision

▶ Melas-Kyriazi 2021
Do You Even Need Attention? A Stack of Feed-Forward
Layers Does Surprising Well on ImageNet

▶ Touvron et al. 2021
ResMLP: Feedforward Networks for Image Classification
with Data Efficient Training

https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.02723
https://arxiv.org/abs/2105.03404

44 / 55

A ConvNet for 2020
▶ Liu et al. 2020

A ConvNet for 2020s

▶ Results on ImageNet

Figure from Lie et al. 2020

https://arxiv.org/abs/2201.03545

45 / 55

Modernizing a ConvNet towards Swin (Hierarchical Vision
Transformer)

Figure from Lie et al. 2020

46 / 55

ConvNeXt: Key ideas
▶ Change stem to Patchify

Replace the ResNet-style stem cell with a patchify layer
implemented using a 4 × 4, stride 4 convolutional layer.
The accuracy has changed from 79.4% to 79.5%.
The stem cell in standard ResNet contains a 7 × 7 convo-
lution layer with stride 2, followed by a max pool, which
results in a 4× downsampling of the input images.

47 / 55

ConvNeXt: Key ideas
▶ ResNeXtify

▶ Grouped convolutions idea from Xie et al. 2016
▶ Depthwise convolution where the number of groups equal to

the number of channels. Similar to MobileNet and Xception.
▶ Only mixes information in the spatial domain.

The combination of depthwise conv and 1 × 1 convs leads
to a separation of spatial and channel mixing, a property
shared by vision Transformers, where each operation either
mixes information across spatial or channel dimension, but
not both.

https://arxiv.org/abs/1611.05431

48 / 55

ConvNeXt: Key ideas
▶ Inverted bottleneck

One important design in every Transformer block is that it
creates an inverted bottleneck, i.e., the hidden dimension of
the MLP block is four times wider than the input dimension.

Figure from Lie et al. 2020

49 / 55

ConvNeXt: Key ideas
▶ Large kernel sizes

One of the most distinguishing aspects of vision Trans-
formers is their non-local self-attention, which enables each
layer to have a global receptive field.
To explore large kernels, one prerequisite is to move up the
position of the depthwise conv layer.

50 / 55

ConvNeXt: Key ideas
▶ Replacing ReLU with GELU

▶ Gaussian Error Linear Unit
(Hendrycks and Gimpel,
2016)

▶ Use fewer activation
functions

▶ Use fewer normalization
layers
▶ Replace batch

normalization with layer
normalization

Figure from Lie et al. 2020

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415

51 / 55

Normalization techniques
Wu and He, 2018

Figure from Wu and He 2018

https://arxiv.org/pdf/1803.08494.pdf

52 / 55

Is object detection solved?
▶ Barbu et al. 2019

ObjectNet: A Large-Scale Bias-Controlled Dataset for
Pushing the Limits of Object Recognition Models‘

▶ Performance on ObjectNet benchmark
▶ 40 to 45% drop in performance

https://objectnet.dev/objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf

53 / 55

Afterward
▶ Adapted from Jeff Hawkins, Founder of Palm Computing.

The key to object recognition is representation.

▶ Convolutional neural networks are particularly well-suited for
computer vision tasks

▶ Convolutional layers “mimic” processing in visual cortex
▶ Exploits spatial relationship between neighbouring pixels
▶ Learns powerful representations that reduce the semantic gap

54 / 55

Practical matters: where to go from here?
▶ Deep learning is as much about engineering as it is about

science
▶ Learn one of deep learning frameworks

▶ Become an efficient coder
▶ Don’t be afraid to use high-level deep learning tools to quickly

prototype baselines (e.g., huggingface)
▶ Deep learning projects share common features

▶ Data loaders
▶ Measuring performance, say accuracy, precision, etc.

https://github.com/huggingface

55 / 55

Copyright and License
©Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

