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Lesson Plan

» Convolutional Networks
» Convolution

» Pooling layers

» Dilated convolutions

» Common architecture

» GoogleNet

P> ResNet

» Densenet

» Squeeze-and-Excitation network

» ConvNext



Classical neural networks for computer vision tasks

» Q. How many paramters per
hidden layer unit?

» Computational issues

» Poor performance

» The model is prone to
overfitting
» Model capacity issues
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Convolutional neural networks

David Hubel and Torsten Wiesel studied cat visual cortex and
showed that visual information goes through a series of processing
steps (Hubeland Wiesel, 1959):

P> edge detection;
P edge combination; and
> motion perception; etc.
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Convolutional neural networks

David Hubel and Torsten Wiesel studied cat visual cortex and
showed that visual information goes through a series of processing
steps (Hubeland Wiesel, 1959):

P> edge detection;
P edge combination; and
> motion perception; etc.

This suggests

» Neurons are spatially localized
» Topographic feature maps
» Hierarchical feature processing

Convolutional layers achieve these properties



Convolutional layers

» Each output unit is a linear function of a localized subset of
input units

» Same linear transformation is applied at each location

» Local features detection is translation invariant



Convolutions in 1D
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The entire process is represented as y = X * w



Convolutions vs. Cross-Correlation

Convolution

l
Y = Z wi/l'l- — 4
) S—~—
flipped

Cross-correlation

Wy
Z ¢ 1+1

=l
not fllpped

> Mathematical convolution flips the kernel; cross-correlation
does not.

» Deep learning libraries typically implement cross-correlation,
relying on learning to absorb the flip.



Stride, Padding, and Dilation

Stride s: number of positions we shift the kernel each step.

padding p

Dilation d: increasing the input field for the kernel. Dilated
convolutions are sometimes called atrous convolutions. (From
French ‘\{a} trous” meaning with holes.)
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Size of the output
For 1D, output length:

effective kernel size

——
Lin+2p—(d(K-1)+1)
S

Lout = +1

where p, s, and d refers to padding, stride, and dilation, respectively.
K = 2]+ 1 is the length of the kernel and L;, is the length of the
input signal.



Convolutions in Higher Dimensions

1, 7 and c index over input

. x height, width, and
output y
BN channels.

7', 7' and ¢’ index over
filter w height, width, and
channels.

input ‘__ Filter w creates output
e
, channel coutput

.. — Wit i1 T Lk il i it
)
Yij,coutput ZZZ i g b= j—7" c—C
i/ j/ cl

output channel coutput



Convolutions in Higher Dimensions

1, 7 and c index over input

. x height, width, and
output y
channels.

7', 7' and ¢’ index over
filter w height, width, and
channels.

Filter w creates output
channel coutput

output channel coutput

input x

Yij,coutput — Z Z Z Wit j7 ! Tj—i! j—j' c—c!
i/ j/ Cl

How do we extend this to deal with the situation when the output
has more than one channels?



Convolutions in Higher Dimensions

1, 7 and c index over input

. x height, width, and
output y
channels.

7', 7' and ¢’ index over
filter w height, width, and
channels.

Filter w creates output
channel coutput

output channel coutput

input x
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i/ j/ Cl

How do we extend this to deal with the situation when the output
has more than one channels? Use one kernel per output channel.



Number of Parameters

Consider a convolutional layer that takes an input feature map of
size H x W x C and create an output feature map of size

H' x W' x C'. The convolutional layer uses an h x w filter. Write
down the number of parameters for this convolutional layer.



Number of Parameters

Consider a convolutional layer that takes an input feature map of
size H x W x C and create an output feature map of size

H' x W' x C'. The convolutional layer uses an h x w filter. Write
down the number of parameters for this convolutional layer.

Answer

U
( hxw HC C )+ ) L )
height and width input channels bias  output channels



Depth-wise (channel-wise) Convolutions

Take an H x W x C input feature finput and map it to an

H' x W' x C feature foutput such that each output channel
Coutput = Cinput * W, Where cinpyt is the corresponding input channel
and w is a 2D convolutional filter. E.g., output channel 2 depends
only upon input channel 2. x denotes the convolutional operator.

finput foutput

‘ 2D filters

i

H H

C



Point-wise (1 x 1) Convolutions

Take a H x W x C' input feature finput and map it to a
H x W x C’ output feature foutput Such that each location

Joutput = [1; J; Coutput] = Weguepr * finput [, j]. Here - refers to dot
product. Coutput € [1,C"].

finput foutput




Depth-wise Separable Convolutions

Depth-wise convolution (per channel spatial filter) +
point-wise (1 x 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H x W x C and create an output feature map of size

H' x W' x C'. The convolutional layer uses C' h x w filters
followed by C’ point-wise filters. Write down the number of
parameters for this convolutional layer.



Depth-wise Separable Convolutions

Depth-wise convolution (per channel spatial filter) +
point-wise (1 x 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H x W x C and create an output feature map of size

H' x W' x C'. The convolutional layer uses C' h x w filters
followed by C’ point-wise filters. Write down the number of
parameters for this convolutional layer.

Answer

((h x w=+1)(C)) + (C x C")
———
depth-wise point-wise




Depth-wise Separable Convolutions

Depth-wise convolution (per channel spatial filter) +
point-wise (1 x 1) convolution for cross-channel mixing

Consider a convolutional layer that takes an input feature map of
size H x W x C and create an output feature map of size

H' x W' x C'. The convolutional layer uses C' h x w filters
followed by C’ point-wise filters. Write down the number of
parameters for this convolutional layer.

Answer

((hxw+1)(C)) + (C x C)
———
depth-wise point-wise

Depth-wise and point-wise convolutions are combined to
cutdown on parameters and computation.



Convolutional neural network

» Convolutional layers provide architectural constraints
» Number of parameters depend upon kernel sizes and not the
size of the input
» Inductive bias
» Architectural constraints
» Image augmentation
» Regularization




LeNet (classifying digits, LeCun 1988)

» The first few layers are convolution layers, and the last few
layers are fully connected layers
» Convolutional layers construct image features that are
subsequently processed by fully connected layers for the
purposes of digit classifisation
» The convolutional layers are compute heavy, but have fewer
parameters
» The fully connected layer have far more parameters, but these
are easy to compute



General idea

» Generally speaking we can interpret convolutional deep
networks as composed of two parts: 1) a (latent) feature
extractor and 2) task head.

P> Feature extractor learns to construct powerful representations
given an input. These representations are well-suited to the
task at hand.

» Feature extractor is often composed of convolution layers

Flattened
Jfeatures

| —p Label

Features

FC

- Convolution + Pooling
Input image

Classification

Feature extraction
head



GooglLeNet

» Szegedy et al. 2014

Going Deeper with Con-
volutions

» Multiple feed-forward passes
» Inception module

» An inception module aims
to approximate local
sparse structure in a CNN
by using filters of different
sizes (within the same
block) whose output is
concatenated and passed
on to the next stage


https://arxiv.org/abs/1409.4842

Inception layer

P> Acts as a bottleneck layer

» 1-by-1 convolutional layers are used to reduce feature channels

» Inception layer (simplified). Each conv is followed by a
non-linear activation.




ResNet

» He et al. 2016
Deep Residual Learning
for Image Recognition

Figure on the right

Left: the VGG-19 model (19.6
billion FLOPs) as a reference.
Middle: a plain network with 34
parameter layers (3.6 billion
FLOPs). Right: a residual
network with 34 parameter layers
(3.6 billion FLOPs). The dotted
shortcuts increase dimensions.
Figure from He et al. 2016.



https://arxiv.org/abs/1512.03385

Residual unit

» Pass through connections
adds the input of a layer to
its output

» Deeper models are harder to
train

» Learn residual function
rather than direct mapping

Residual Unit

28 / 55



Loss landscape with residual units

Notice the loss landscape with and without residual connections

56 layer ConvNet

56 layer ResNet

Figure taken from K. Derpanis notes on deep learning.



Densenet

» Huang et al. 2017 > Densely Connected Convolutional
Networks

Figure from Huang et al. 2017.


https://arxiv.org/abs/1608.06993

Densenet

» Feature-maps learned by any of the layers can be accessed by
all subsequent layers.
» Encourages feature reuse throughout the network
» Leads to more compact models
» Supports diversified depth
» Improved training
» Individual layers get additional supervision from loss function
through shorter (more direct) connections

» Similar to DSN (Lee et al. 2015) that attach classifiers to each
hidden layer forcing intermediate layers to learn discriminative
features

» Scale to hundreds of layers without any optimization difficulties



Dense blocks and transition layers

Input

Prediction

Dense Block 1 Dense Block 2

Dense Block 3

]
Biood

Bujood
WoRnoAuoD
Bjood

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

Figure from Huang et al. 2017



Densenet vs. Resnet
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Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop
testing) on the ImageNet validation dataset as a function of learned parameters (left)

and FLOPs during test-time (right).

Figure from Huang et al. 2017



Squeeze-and-Excitation Networks

> Hu et al. 2018
Squeeze-and-Excitation Networks
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Figure from Hu et al. 2018


https://arxiv.org/abs/1709.01507

SE Block

» Squeeze operator
» Allows global information to be used when computing
channel-wise weights
» Excitation operator
» Distribution across different classes is similar in early layers,
suggesting that feature channels are “equally important” for
different classes in early layers
» Distribution becomes class-specific in deeper layers
» SE blocks may be used for model prunning and network
compression

F. (\W)

X U F, () EqD]JJJ(JJ—'-Hl}J]
Ty

Squeeze-and-Excitation block (simplified).




SE Performance

TABLE 4 ABLE 6
Classification error (%) on CIFAR-10. Single-crop error rates (%) on Places365 validation set.
original | SENet top-1 err. | top-5 err.
ResNet-110 [14] 6.37 521 Places365-CNN [72] | 41.07 1148
“f:;ﬁf:';g“llﬁgl igf", ggg ResNet-152 (ours) 41.15 11.61
g . SE-ResNet-152 40.37 11.01
Shake-Shake 26 2x96d [68] + Cutout [69] | 2,56 | 2.12

TABLE 7
TABLE 5 Faster R-CNN object detecti lts (%) on COCO minival set.
Classification error (%) on CIFAR-100. aster oblect detection resuls (%) on mmeese

original | SENet AP@IoU=0.5 AP
ResNet-110 [14] 26.88 23.85 ResNet-50 57.9 38.0
ResNet-164 [14] 2433 | 2131 SE-ResNet-50 61.0 404
WRN-16-8 [67] 2043 | 19.14 ResNet-101 60.1 39.9
Shake-Even 29 2x4x64d [68] + Cutout [69] | 15.85 | 15.41 SE-ResNet-101 62.7 419

Taken from Hu et al. 2018



Spatial attention

» SE computes channel weights; however, we can easily extend
this idea to compute spatial weights to model some notion of
spatial attention

» The model will pay more attention to f



Other notable examples

» Larsson et al., 2016
FractalNet: Ultra-Deep Neural Networks without Residuals

» landola et al., 2016

SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Pa-
rameters and <0.5MB Model Size

» Howard et al., 2017

MobileNet: Efficient Convolutional Neural Networks for
Mobile Vision Applications


http://people.cs.uchicago.edu/~larsson/fractalnet/
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861

Other notable examples

> Xie et al., 2017

Aggregated Residual Transformation for Deep Neural Net-
works

> Han et al,, 2016
Deep Pyramidal Residual Networks

» Chollet, 2017

Xception: Deep Learning with Depthwise Separable Con-
volutions


https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1610.02915
https://arxiv.org/abs/1610.02357

Transformers (2017)

» Vaswani et al., 2017

Attention Is All You
Need

» Transformers use
attention-based computation.

» These models are popular in
Natural Language Processing
community.

» GPT3 language model also
uses attention-based
computation and it has
roughly 175 billion
parameters.

Figure 1: The Transformer


https://arxiv.org/abs/1706.03762

Attention

» Zhao et al., 2020

Exploring Self-attention for Image Recognition

» Carion et al., 2020
End-to-End Object Detection with Transformers

» Dosovitsky et al., 2020

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale

» Zheng et al., 2020

Rethinking Semantic Segmentation from a Sequence-to-
Sequence Perspective with Transformers


https://arxiv.org/abs/2004.13621
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2012.15840

Learning convolution kernels

» CNNs benefit from different kernel sizes at different layers

» Exploring all possible combinations of kernel sizes is infeasible
in practice

» Romero et al. 2022

FlexConv: Continuous Kernel Convolutions with Differen-
tiable Kernel Sizes

> Riad et al. 2022
Learning Strides in Convolutional Neural Networks


https://arxiv.org/abs/2110.08059
https://arxiv.org/abs/2202.01653

MLPs

Tolstikhin et al. 2021
MLP-Mixer: An all-MLP Architecture for Vision

Melas-Kyriazi 2021

Do You Even Need Attention? A Stack of Feed-Forward
Layers Does Surprising Well on ImageNet

Touvron et al. 2021

ResMLP: Feedforward Networks for Image Classification
with Data Efficient Training


https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.02723
https://arxiv.org/abs/2105.03404

A ConvNet for 2020

> Liu et al. 2020
A ConvNet for 2020s

» Results on ImageNet

ImageNet-1K Acc.

90
88
86 ConvNeXt
Swin Transformer
(2021) ConvNeXt
- Swin Transformer
DeiT ViT 1)

ResNet

(2015) (2020) (2020)
82 . [ J
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80 EEED
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I ImageNet-1K Trained ImageNet-22K Pre-trained

Figure 1. ImageNet-1K classification results for ¢ ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here
take 224?/3847 images respectively. ResNet and ViT results were
obtained with improved training procedures over the original papers.
‘We demonstrate that a standard ConvNet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.

Figure from Lie et al. 2020


https://arxiv.org/abs/2201.03545

Modernizing a ConvNet towards Swin (Hierarchical Vision
Transformer)

Figure from Lie et al. 2020



ConvNeXt: Key ideas

» Change stem to Patchify

Replace the ResNet-style stem cell with a patchify layer
implemented using a 4 x 4, stride 4 convolutional layer.
The accuracy has changed from 79.4% to 79.5%.

The stem cell in standard ResNet contains a 7 X 7 convo-
lution layer with stride 2, followed by a max pool, which
results in a 4x downsampling of the input images.



ConvNeXt: Key ideas

> ResNeXtify
» Grouped convolutions idea from Xie et al. 2016
» Depthwise convolution where the number of groups equal to
the number of channels. Similar to MobileNet and Xception.
» Only mixes information in the spatial domain.
The combination of depthwise conv and 1 x 1 convs leads
to a separation of spatial and channel mixing, a property
shared by vision Transformers, where each operation either
mixes information across spatial or channel dimension, but
not both.


https://arxiv.org/abs/1611.05431

ConvNeXt: Key ideas

P Inverted bottleneck
One important design in every Transformer block is that it
creates an inverted bottleneck, i.e., the hidden dimension of
the MLP block is four times wider than the input dimension.

.33
d3x3, 96—+96 d3x3, 384384 1x1, 96384

1%1, 96384 1x1, 38496 1x1, 38496

(a) (b) (©)

Figure 3. Block modifications and resulted specifications. (a) is
a ResNeXt block; in (b) we create an inverted bottleneck block and
in (c) the position of the spatial depthwise conv layer is moved up.

Figure from Lie et al. 2020



ConvNeXt: Key ideas

P> Large kernel sizes

One of the most distinguishing aspects of vision Trans-
formers is their non-local self-attention, which enables each
layer to have a global receptive field.

To explore large kernels, one prerequisite is to move up the
position of the depthwise conv layer.



ConvNeXt: Key ideas
» Replacing ReLU with GELU

» Gaussian Error Linear Unit
(Hendrycks and Gimpel,
2016)
» Use fewer activation
functions
» Use fewer normalization
layers

» Replace batch
normalization with layer
normalization

Swin Transformer Block

MLP blocks a

Figure from Lie et al. 2020

ey are cquivalent.


https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415

Normalization techniques
Wu and He, 2018

Batch Norm Layer Norm Instance Norm Group Norm

Figure 2. Normalization methods. Each subplot shows a featurc map tensor, with V as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Figure from Wu and He 2018


https://arxiv.org/pdf/1803.08494.pdf

Is object detection solved?

» Barbu et al. 2019
ObjectNet: A Large-Scale Bias-Controlled Dataset for
Pushing the Limits of Object Recognition Models’

» Performance on ObjectNet benchmark
» 40 to 45% drop in performance


https://objectnet.dev/objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf

Afterward

» Adapted from Jeff Hawkins, Founder of Palm Computing.

The key to object recognition is representation.

» Convolutional neural networks are particularly well-suited for
computer vision tasks

» Convolutional layers “mimic” processing in visual cortex

» Exploits spatial relationship between neighbouring pixels

» Learns powerful representations that reduce the semantic gap



Practical matters: where to go from here?

P Deep learning is as much about engineering as it is about
science
» Learn one of deep learning frameworks
» Become an efficient coder
» Don't be afraid to use high-level deep learning tools to quickly
prototype baselines (e.g., huggingface)
» Deep learning projects share common features

» Data loaders
» Measuring performance, say accuracy, precision, etc.


https://github.com/huggingface
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