
1 / 19

Recurrent Neural Networks
Advanced Topics in High-Performance Computing

Faisal Qureshi



2 / 19

Copyright information
These slides draw heavily upon works of many individuals, notably among
them are:

I Nando de Freitas
I Fei-Fei Li
I Andrej Karpathy
I Justin Johnson



3 / 19

Recurrent Neural Networks (RNN)

I one to one: image classification
I one to many: image captioning
I many to one: sentiment analysis
I many to many: machine translation
I many to many: video understanding

[From A. Karpathy Blog]



4 / 19

Sequential processing of fixed inputs
I Multiple object recognition with visual attention, Ba et al.



5 / 19

Sequential processing of fixed outputs
I DRAW: a recurrent neural network for image generation, Gregor et al.



6 / 19

Recurrent Neural Network

I ht = φ1 (ht−1,xt)
I ŷt = φ2 (ht)

Where
I xt = input at time t
I ŷt = prediction at time t
I ht = new state
I ht−1 = previous state
I φ1 and φ2 = functions with parameters W s

that we want to train
Subscript t indicates sequence index.

Example

ht = Tanh (Whhht−1 +Wxhxt)
ŷt = softmax (Whyht)



7 / 19

Recurrent Neural Networks - Unrolling in Time
I Parameters Wxh, Whh and Why are tied over time
I Cost: E =

∑
t Et, where Et depends upon yt

I Training: minimize E to estimate Wxh, Whh and Why



8 / 19

Recurrent Neural Network: Loss
When dealing with output sequences, we can define loss to be a function of
the predicted output ŷt and the expected value yt over a range of times t

E(y, ŷ) =
∑

t

Et(y, ŷ)

Example: using cross-entropy for k-class classification problem

E(y, ŷ) = −
∑

t

yt log ŷt



9 / 19

Recurrent Neural Networks: Computing Gradients
We need to compute ∂E

∂Wxh
, ∂E

∂Whh
and ∂E

∂Why
in order to train an RNN

Example

∂E3

∂Whh
=

3∑
k=0

∂E3

∂ŷ3

∂ŷ3

∂h3

∂h3

∂hk

∂hk

∂Whh



10 / 19

Recurrent Neural Networks: Vanishing and Exploding
Gradients

We can compute the highlighted term in the following expression using
chain-rule

∂E3

∂Whh
=

3∑
k=0

∂E3

∂ŷ3

∂ŷ3

∂h3

∂h3

∂hk

∂hk

∂Whh

Applying the chain-rule

∂h3

∂hk
=

3∏
j=k+1

∂hj

∂hj−1

Or more generally
∂ht

∂hk
=

t∏
j=k+1

∂hj

∂hj−1



11 / 19

Recurrent Neural Networks: Difficulties in Training

∂Et

∂Whh
=

t∑
k=0

∂Et

∂ŷt

∂ŷt

∂ht

 t∏
j=k+1

∂hj

∂hj−1

 ∂hk

∂Whh

∂hi

∂hi−1
is a Jacobian matrix.

For longer sequences

I if
∣∣∣ ∂hi

∂hi−1

∣∣∣ < 0, the gradients vanish
I Gradient contributions from “far away” steps become zero, and the

state at those steps doesn’t contribute to what you are learning.
I Long short-term memory units are designed to address this issue

I if
∣∣∣ ∂hi

∂hi−1

∣∣∣ > 0, the gradients vanish
I Clip gradients at a predefined threshold

I See also, On the difficulty of training recurrent neural networks,
Pascanu et al.



12 / 19

Image Captioning



13 / 19

Image Captioning
For the image captioning example shown in the previous slide, ht is
defined as follows:

ht = Tanh(Whhht−1 +Wxhx +Wihv)
ŷt = softmax(Whyht)



14 / 19

Image Captioning
I Explain Images with Multimodal Recurrent Neural Networks, Mao et

al.
I Deep Visual-Semantic Alignments for Generating Image Descriptions,

Karpathy - and Fei-Fei
I Show and Tell: A Neural Image Caption Generator, Vinyals et al.
I Long-term Recurrent Convolutional Networks for Visual Recognition

and Description, Donahue et al.
I Learning a Recurrent Visual Representation for Image Caption

Generation, Chen and Zitnick



15 / 19

Dealing with Vanishing Gradients
Change of notation

ct = θct−1 + θggt

ht = tanh(ct)



16 / 19

Long Short Term Memory (LSTM)



17 / 19

Long Short Term Memory (LSTM)
I Input gate: scales input to cell (write operation)
I Output gate: scales input from cell (read operation)
I Forget gate: scales old cell values (forget operation)

it = sigm(θxixt + θhiht−1 + bi)
ft = sigm(θxf xt + θhf ht−1 + bf )
ot = sigm(θxoxt + θhoht−1 + bo)
gt = tanh(θxgxt + θhght−1 + bg)
ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh(ct)

◦ represent element-wise multiplication



18 / 19

RNN vs. LSTM
Check out the video at https://imgur.com/gallery/vaNahKE

https://imgur.com/gallery/vaNahKE


19 / 19

Summary
I RNN

I Allow a lot of flexibility in architecture design
I Very difficult to train in practice due to vanishing and exploding

gradients
I Control gradient explosion via clipping
I Control vanishing gradients via LSTMs

I LSTM
I Very power architecture for dealing with sequences (input/output)
I Works rather well in practice


