
1 / 25

Neural Networks
Advanced Topics in High-Performance Computing

Faisal Qureshi



2 / 25

Feed forward neural networks
I Approximate some function y = f∗(x) by learning parameters θ s.t.
ỹ = f(x; θ)

I Feed forward neural networks can be seen as directed acyclic graphs

y = f(x) = f (3)(f (2)(f (1)(x)))

I Training examples specify the output of the last layer
I Network needs to figure out the inputs/outputs for the hidden layers



3 / 25

Extending linear models
How can we extend linear models?

I Specify a very general φ s.t. the model becomes y = θTφ(x)
I Problem with generalization
I Difficult to encode prior information needed to solve AI-level tasks

I Engineer φ for the task at hand
I Tedious
I Difficult to transfer to new tasks

I Neural networks approaches
I y = f(x; θ, w) = φ(x; θ)Tw i.e. use parameters θ to learn φ and use
w to map φ(x) to the desired output y

I The training problem is non-convex
I Key advantage: a designer just need to specify the right family of

functions and not the exact function φ



4 / 25

Linear regression
Perceptron with linear activation for linear regression



5 / 25

Classification - Linear separating plane
Perceptron with sigmoid activation for classification



6 / 25

Regression - 2 layer, 3 perceptron neural network
Last layer has linear activation



7 / 25

Classification - 2 layer, 3 perceptron neural network
Last layer has sigmoid activation



8 / 25

The time before deep networks

Figure 1: Neural networks for digit recognition



9 / 25

Neural networks
Old view

I Shallow and wide
I One hidden layer can represent any function
I Focus was on efficient ways to optimize (train)

Current view

I Deep networks - multi-layer networks
I Access to data
I Advances in computer science, physics and engineering
I Deep networks outperform humans on many tasks



10 / 25

Gradient-based learning in neural networks
I Non-linearities of neural networks render most cost functions

non-convex
I Use iterative gradient based optimizers to drive cost function to lower

values
I Gradient descent applied to non-convex cost functions has no

guarantees is sensitive to initial conditions
I Initialize weights to small random values
I Initialize biases to zero or small positive values



11 / 25

Cost functions
I Most modern neural networks are trainined using maximum likelihood

principle
I When parametric values defines a distribution p(y|x; θ) the negative

log-likelihood is the cross-entropy between the training data and
model predictions

I Advantage of using maximum likelihood: we get cost for free, which
is − log p(y|x)

I Gradient of the cost function must be large (and predictable)

Another advantage of using negative log likelihood as a cost
function
When hidden or output units saturate, their gradients become really small,
creating difficulties for gradient based learning methods. Many output
units contain and exp(), for example softmax, an advantage of using
negative log likelihood is also that it undoes the effects of exp()
preventing saturation



12 / 25

Output units
The role of the output units is to provide some additional transformations
from the features computed by the hidden layers to complete the task at
hand:

y = f(h),

where h = f(x; θ) are the features computed by the hidden layer.

I Linear units
I Sigmoid units
I Softmax units



13 / 25

Hidden units
I ReLU
I Leaky ReLU
I Parametric ReLU
I Maxout
I Dropout
I Logistic, sigmoid, hyperbolic tangent

I Rarely used as hidden units these days, except for recurrent networks



14 / 25

Regularization for deep networks 1
Regularization: any modification to reduce generalization error but not the
training errors:

I extra constraints and penalties
I prior knowledge

Deep learning is applied to extremely complex tasks. Consequently,
regularization is not as simple as controlling the number of parameters



15 / 25

Regularization for deep networks 2
I Parameter norm penalties
I Data augmentation

I Fake data
I Successful in classification/object recognition tasks

I Noise injection
I Applying random noise to the inputs
I Applying random noise to hidden layers’ inputs

I Data augmentation at multiple levels of abstraction
I Data augmentation almost always improves the performance of a

neural network
I Noise added to the weights

I Recurrent neural networks
I A practical stochastic implementation of Bayesian inference over

weights
I Noise can also bve added to target outputs



16 / 25

Deep learning: backpropagation

zl+1 = f l(zl; θl)

δl = δl+1 ∂f l(zl; θl)
∂zl

δl
i =

∑
j

δl+1
j

∂f l
j(zl; θl)
∂zl

j

∂E

∂θl
= δl+1 ∂f l(zl; θl)

∂θl

∂E

∂θl
i

=
∑

j

δl+1
j

∂f l
j(zl; θl)
∂θl

i

From Nando de Freitas



17 / 25

Deep learning: linear layer

zj = fj(x; θj) =
∑

i

xiθji



18 / 25

Deep learning: ReLU layer

zj = fj(xj) = max(0, xj)



19 / 25

Figure 2: Convnet



20 / 25

Figure 3: Feature maps (Matthew Zeiler & Rob Fergus)



21 / 25

Convolution



22 / 25

Alexnet

Alexnet



23 / 25

Image convolution layer

yi′,j′,f ′ = bf ′+
Hf∑
i=1

Wf∑
j=1

F∑
f=1

xi′+i−1,j′+j−1,fθijff ′

Convolution layer



24 / 25

Image max-pooling layer

yi′,j′ = max
i,j∈Ω(i′,j′)

xi,j

Max pool with 2x2 filter and stride 2



25 / 25

Readings
I Ch. 6-9 of Deep Learning by I. Goodfellow et al.


