
1 / 51

Optimization
Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 51

Acknowledgements
▶ Lecture notes by Hinton and others found at CS UofT.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

3 / 51

Lesson Plan
▶ Minimizing loss and the need for numerical techniques
▶ Gredient desent

▶ Recipe
▶ Update rule

▶ Batch update
▶ Mini-batch update
▶ Stochastic (or online) gradient descent
▶ Learning rate

▶ Changing learning rate to achieve faster convergence
▶ Momentum and other variants of gradient descent
▶ Newton’s method

▶ How to choose a step size?
▶ Momentum

4 / 51

Gradient and Hessian
Consider a function

f(x1, · · · , xd) ∈ R

Gradient of f is (caputres slope of a function at a point)

∇f =

∂f
∂x1...
∂f
∂xd

 ∈ Rd

Hessian of f is (caputres curvature of a function at a point)

H = ∇2f =

∂2f
∂x2

1
· · · ∂2f

∂x1∂xd

...
∂2f

∂xd∂x1
· · · ∂2f

∂x2
d

 ∈ Rd×d

5 / 51

Jacobian
Consider a vector-valued function

f(x1, x2, x3, · · · , xd) = (f1, f2, f3, · · · , fn) ∈ Rn

Jacobian of f is

J =

∂f1
∂x1

· · · ∂f1
∂xd...

∂fn

∂x1
· · · ∂fn

∂xd

 ∈ Rn×d

6 / 51

Example problem
Consider data points (x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N)). Our
goal is to learn a function f(x) that returns (predict) the value y
given an x.

Choose a model
We assume that a linear model of the form y = f(x) = θ0 + θ1x
best describes our data.

Problem
How do we determine the degree of “fit” of our model?

7 / 51

Example problem
Loss/cost/objective function measures the degree of fit of a model
to a given data.

Least squares error

C(θ0, θ1) =
N∑

i=1

(
y(i) − f(x(i))

)2

Task (learning)
Our task is to find values for θ0 and θ1 (model parameters) to
minimize the cost.

8 / 51

Example problem
Minimizing cost

(θ0, θ1) = arg min
(θ0,θ1)

C(θ)

This is a convex function. We can solve for θ0 and θ1 by setting
∂C
∂θ0

= 0 and ∂C
∂θ1

= 0.

9 / 51

Minimizing cost and the need for numerical techniques
In general cost functions are not convex and it is not possible to
find a minima (there are absolutely no guarantees about finding the
global minima) using analytical methods

Figure from ATTRIBUTION MISSING

10 / 51

Gradient descent
A very powerful method of training the model parameters by
minimizing the loss function. One of the simplest optimization
methods. It is also referred to as steepest descent.

11 / 51

Gradient descent recipe
1. Initialize model parameters randomly (in our case θ)
2. Compute gradient of the loss function
3. Take a step in the direction of negative gradient (decreasing

loss function) and update parameters
4. Repeat steps 2 to 4 until cannot decrease loss function anymore

12 / 51

Update rule
If C(θ) is the cost that we wish to minimize then the gradient
descent update rule is

θ(k+1) = θ(k) − η
∂C

∂θ

∣∣∣∣
k

= θ(k) − ηgk

where η is referred to as the learning rate, which controls the size of
the step taken at each iteration.
Notation alert: We set gk = ∇θC|k to simplify the notation.

13 / 51

Batch update
▶ Sum or average updates across every example, then change the

parameter values

θ(k+1) = θ(k) − η
N∑

i=1
g(i)

k

where N is the number of examples (or data items).

14 / 51

Mini-batch update
▶ Sum or average updates across a subset of the examples, then

change the parameter values
▶ Examples in each batch are selected at random

θ(k+1) = θ(k) − η
Nbatch∑

i=1
g(i)

k

where Nbatch is the number of examples (or data items) in a
mini-batch.

▶ This is particularly useful when dealing with very large datasets
▶ Ability to exploit computational efficiencies

▶ Mini-batches need to be balanced for classes

15 / 51

Stochastic or online gradient desent
▶ Update parameter values for each training example in turn
▶ This assumes that sample is i.i.d. (independent, identically

distributed)
θ(k+1) = θ(k) − ηg(i)

k

where i is the i-th example (or data item).
▶ Assumes that the dataset is highly redundant

16 / 51

The effects of using a subset of data to compute loss

Figure from ATTRIBUTION MISSING

17 / 51

The error surface of a linear neuron
▶ Error surface is a quadratic bowl for linear neuron with squared

error
▶ Quadratic bowl view is a good approximation for error surface

when dealing with multilayer networks
▶ Consider a quadratic bowl, does the gradient at a location

points to its minima?
▶ Only when the quadratic bowl is a circle

18 / 51

Convergence on elliptic quadratic bowls
▶ The gradient is big in one direction and small in the other

direction
▶ The minima lies such that we need to travel little along the

direction of the big gradient and travel more along the direction
of the small gradient.

▶ This results in a to and fro motion
▶ The oscillations diverge if the learning rate is too large

▶ What is needed?
▶ Take large steps along the direction of small, but consistent,

gradients
▶ Take small steps along the direction of large, but inconsistent,

gradients

19 / 51

Learning rate
▶ η too large, and the system might not converge
▶ η too small, and the system might take too long to converge

20 / 51

Too small or too large a learning rate

learning late is too small learning rate is too large

21 / 51

Too small or too large a learning rate

Figure from ATTRIBUTION MISSING

22 / 51

Changing learning rate mid-training
▶ Reduce learning rate during training

▶ Raduces random fluctuations due to differences in gradient
computation over mini-batches

▶ Need to be done with care
▶ Avoids zig-zag behavior

Figure from ATTRIBUTION MISSING

Figure from ATTRIBUTION MISSING

23 / 51

Gradient descent

θ(k+1) = θ(k) − ηgk

▶ For gradient descent, C(θ), i.e., the objective, should decrease
after every step.

▶ A common scheme is stop iterations (i.e., declare convergence)
if decrease in C(θ) is less than some threshold ϵ (say 10−3) in
one iteration.

▶ General rule of thumb: If gradient descent isn’t working, use a
smaller η.

▶ Towards the end of minibatch training, reduce learning rate
▶ Prevents oscillations in the final parameter values between

different minibatches

24 / 51

Parameter initialization
▶ Small random values to break symmetry
▶ When two neurons have exactly same inputs and outputs (i.e.,

same bias and weights) they get the same gradient and they
can cannot learn different features

▶ Often helps to initialize the incoming weights to be
proportional to the square root of fan-in

25 / 51

Shifting the input values
▶ It is useful to shift to input values such that each component

of the input vector has a zero mean throughout
▶ Particularly so when using steepest descent algorithms for

optimization
▶ Decorrelate the input dimensions

▶ Use PCA
▶ Drop dimensions with smallest eigenvalues to achieve some

compression
▶ Divide the remaining principal components by the square roots

of their eigenvalues. For a linear neuron this makes the error
surface cirvular.

26 / 51

Common pitfalls
▶ Large learning rates can make weights very large (positive or

negative) and the hidden units may saturate leading to very
small derivatives.
▶ This looks like a local minima, but it is actually a plateau.

▶ For classification networks that use crossentropy losses, the
best guessing strategy is to make each output unit always spit
out a 1 equal to the proportion of time it shoudl be 1.
▶ Network can quickly get stuck in this. This too is a plateau that

behaves like a local minima.

27 / 51

Solutions
▶ Use momentum
▶ Use adaptive learning rates for each parameter
▶ Check out the optimization literature to look for more

sophisticated methods for minimizing functions, say methods
that make use of curvature information.

28 / 51

Exponential Moving Average (EMA)
Given a series of data:

· · · , x(3), x(2), x(1)

Compute EMA as

⟨x⟩(i) = αx(i) + (1 − α)⟨x⟩(i−1)

where α ∈ [0, 1] and ⟨x⟩(i) is the running average at time i.

29 / 51

Gradient descent

θ(k+1) = θ(k) − ηgk

- Learning rate η = 0.0001

30 / 51

Momentum
▶ Akin to giving a short-term memory to gradient descent

m(k) = βm(k−1) + (1 − β)gk

θ(k+1) = θ(k) − ηm(k)

▶ Momentum m(k) is the first moment (the mean) of gradients
at time k

▶ β = 0.9
▶ Momentum helps with tight ravines in the loss landscap
▶ Learning rate η = 0.001

Polyak, Boris. (1964). Some methods of speeding up the convergence of iteration methods. Ussr Computational
Mathematics and Mathematical Physics. 4. 1-17. 10.1016/0041-5553(64)90137-5.

31 / 51

Momentum

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

32 / 51

Nesterov accelerated gradient
▶ Consider the momentum update rule

θ(k+1) = θ(k) − ηm(k)

= θ(k) − η
(
βm(k−1) + (1 − β)gk

)
▶ We know that we will update the parameters using momentum

term m(k−1) and the gradient computed at the current
parameter value

▶ Instead let’s update the parameters using the momentum term
and compute gradient at the updated parameter value

33 / 51

Nesterov Accelerated Gradient (NAG)

mk = βmk−1 + ηg(k+βm(k−1))

θ(k+1) = θ(k) − mk

Source G. Hinton lecture 6

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

34 / 51

Adaptive Gradient (AdaGrad)
▶ Updates the learning rate by dividing it by the square root of

cumulative sum of current and past squared gradients

G(k) = G(k−1) + diag(g2
k)

θ(k+1) = θ(k) −
(

η√
G(k) + ϵ

)
gk

▶ g2
k denotes element-wise square of gradient vector at step k

▶ G(k) is a diagonal matrix.
▶ G

(k)
ii contains sum of squares of derivative w.r.t. parameter θi.

▶ ϵ = 10−7 prevents a divison by zero.

John Duchi, Elad Hazan, Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

35 / 51

AdaGrad
▶ One doesn’t need to tune the learning rate manually
▶ Often η = 0.01 is used
▶ The learning rate shrinks over time, eventually becoming

infinitesimally small at which point the model can no longer
learn

36 / 51

AdaGrad notation simplification
▶ With some abuse of notation, we re-write AdaGrad as follows

v(k) = v(k−1) + g2
k

θ(k+1) = θ(k) −
(

η√
v(k) + ϵ

)
gk

▶ v takes place of G and we assume that the shape of v can be
infered from the surrounding context

▶ We’ll stick to this notation for the next little while

37 / 51

Adadelta
▶ AdaGrad monotonically decreases the learning rate, Adadelta

aims to fix this behavior
▶ Adadelta restricts sum of squared gradients to the previous w

steps (in practice it is easier to just maintain the running
average)

v(k) = β1v(k−1) + (1 − β1)g2
k

∆k =
√

u(k−1) + ϵ√
v(k) + ϵ

gk

θ(k+1) = θ(k) − ∆k

u(k) = β2u(k−1) + (1 − β2)∆2
k

▶ v(k) is the second moment (uncentered variance) of gradients
up to step k

▶ u(k−1) is the second moment (uncentered variance) of the
updates up to step k

38 / 51

Adadelta
▶ ϵ ≈ 10−7 prevents a divison by zero.
▶ The learning rate also has been eliminated.
▶ However, some implementations still use a learning rate (see

PyTorch)

39 / 51

RMSProp

v(k) = βv(k−1) + (1 − β)g2
k

θ(k+1) = θ(k) −
(

η√
v(k) + ϵ

)
gk

▶ β = 0.9
▶ ϵ ≈ 10−7 prevents a divison by zero.
▶ Learning rate η = 0.001

40 / 51

Adam

m(k) = β1m(k−1) + (1 − β1)gk

m̂(k) = mt

(1 − β1)
v(k) = β2v(k−1) + (1 − β2)g2

k

v̂(k) = vt

(1 − β2)

θ(k+1) = θ(k) −
(

η√
v̂(k) + ϵ

)
m̂(k)

▶ mt and vt are estimates of first moment and second moment
of gradients, respectively

41 / 51

Adam
▶ Compute bias-corrected first and second moments, m̂ and v̂,

since m and v are initialized to 0, so they are biased towards 0,
especially when 1) β1 and β2 are small and 2) during initial
timesteps

▶ ϵ ≈ 10−8 prevents a divison by zero.
▶ β1 = 0.9 and β2 = 0.999

42 / 51

Vector norms
▶ The vector norm |x|p for p = 1, 2, 3, · · ·

|x|p =
(∑

i

|xi|p

) 1
p

▶ |x|∞ is a special case

|x|∞ = max
i

xi

43 / 51

AdaMax
▶ In Adam v(k) is updated via l2 norm, we can change it to use

lp norm instead

v(k) = βp
2v(k−1) + (1 − βp

2)|gk|p

▶ Using large values of p leads to numerical unstability
▶ l∞ exhibits stable behavior, however

v(k) = β∞
2 v(k−1) + (1 − β∞

2)|gk|∞

= max
(
β∞

2 v(k−1), |gk|
)

44 / 51

AdaMax
▶ No need to compute v̂, since max operation makes v less

susceptible to bias towards 0

m(k) = β1m(k−1) + (1 − β1)gk

m̂t = m(k)

(1 − β1)
v(k) = max

(
β∞

2 v(k−1), |gk|
)

θ(k+1) = θ(k) −
(

η√
v(k) + ϵ

)
m̂(k)

▶ β1 = 0.9
▶ β∞

2 = 0.99
▶ η = 0.001

45 / 51

Other approaches
Nesterov-accelerated Adaptive Momentum Estimation
(NADAM)
▶ Combines Adam and NAG

AMSGrad
▶ Uses the maximum of past squared gradients rather then the

uncentered variance of these gradients (i.e., average of the past
squared gradients)

And many others
▶ See here for some recent gradient descent based algorithms

(last accessed on Feb 4, 2023)
▶ Check out this for playing around with different algorithms

(last accessed on Feb 4, 2023)

https://johnchenresearch.github.io/demon/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

46 / 51

Newton’s method
Problem: Given f(θ), find θ such that f(θ) = 0

Observation: Gradient is the slope of the function.

f ′(θ(0)) = f(θ(0))
∆ = f(θ(0))

θ(1) − θ0

47 / 51

Newton’s method
An iterative method to solve the above problem is:

1. Start with an initial value of θ
2. Update θ as follows

θ(1) = θ(0) − f(θ(0))
f ′(θ(0))

3. Repeat until f(θ) ≈ 0 or maximum number of iterations have
reached.

48 / 51

Using Newton’s method to minimize a function
▶ We are interested in maximizing or minimize a function, e.g.,

we minimize the negative log likelihood to estimate the
parameters.

▶ Gradient is 0 at maxima, minima and saddle points of a
function.

▶ We can use the following update rule to maximize or minimize
a function.

θ(1) = θ(0) − C ′(θ(0))
C ′′(θ(0))

▶ This update rule is a direct application of the Newton’s method
and finds C ′(θ) = 0.

49 / 51

Newton’s method to minimize a function in higher
dimensions

Using Hessian we can write down the update rule as follows

θ(k+1) = θ(k) − H−1
k gk

where Hk = ∇2C
∣∣
k denotes Hessian at step k and gk denotes

gradient at step k.

50 / 51

Summary
▶ Gradient descent

▶ Batch update
▶ Online or stochastic

▶ Learning rate
▶ Momentum
▶ Hessian
▶ These methods work well in practice
▶ All of these methods converge as long as the learning rate is

sufficiently small
▶ The speed of convergence differs great, however
▶ Newton’s method converges quadratically

▶ Every iteration of Newton’s method doubles the number of
digits to which your solution is accurate, e.g., error goes from
0.01 to 0.0001 in one step

▶ This only holds when already close to the solution
▶ θ is initialized randomly

51 / 51

Copyright and License
©Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

