Optimization Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Acknowledgements

Lecture notes by Hinton and others found at CS UofT.

Lesson Plan

- Minimizing loss and the need for numerical techniques
- Gredient desent
 - Recipe
 - Update rule
- Batch update
- Mini-batch update
- Stochastic (or online) gradient descent
- Learning rate
 - Changing learning rate to achieve faster convergence
- Momentum and other variants of gradient descent
- Newton's method
 - How to choose a step size?
- Momentum

Gradient and Hessian

Consider a function

$$f(x_1,\cdots,x_d)\in\mathbb{R}$$

Gradient of f is (caputres slope of a function at a point)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix} \in \mathbb{R}^d$$

Hessian of f is (caputres curvature of a function at a point)

$$\mathbf{H} = \nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

Jacobian

Consider a vector-valued function

$$\mathbf{f}(x_1, x_2, x_3, \cdots, x_d) = (f_1, f_2, f_3, \cdots, f_n) \in \mathbb{R}^n$$

Jacobian of ${\bf f}$ is

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_d} \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Example problem

Consider data points $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(N)}, y^{(N)})$. Our goal is to learn a function f(x) that returns (predict) the value y given an x.

Choose a model

We assume that a linear model of the form $y = f(x) = \theta_0 + \theta_1 x$ best describes our data.

Problem

How do we determine the degree of "fit" of our model?

Example problem

Loss/cost/objective function measures the degree of fit of a model to a given data.

Least squares error

$$C(\theta_0, \theta_1) = \sum_{i=1}^{N} \left(y^{(i)} - f(x^{(i)}) \right)^2$$

Task (learning)

Our task is to find values for θ_0 and θ_1 (model parameters) to minimize the cost.

Example problem

Minimizing cost

$$(\theta_0, \theta_1) = \operatorname*{arg\,min}_{(\theta_0, \theta_1)} C(\theta)$$

This is a convex function. We can solve for θ_0 and θ_1 by setting $\frac{\partial C}{\partial \theta_0} = 0$ and $\frac{\partial C}{\partial \theta_1} = 0$.

Minimizing cost and the need for numerical techniques

In general cost functions are not convex and it is not possible to find a minima (there are absolutely no guarantees about finding the global minima) using analytical methods

Figure from ATTRIBUTION MISSING

Gradient descent

A very powerful method of training the model parameters by minimizing the loss function. One of the simplest optimization methods. It is also referred to as *steepest descent*.

Gradient descent recipe

- 1. Initialize model parameters randomly (in our case θ)
- 2. Compute gradient of the loss function
- 3. Take a step in the direction of negative gradient (decreasing loss function) and update parameters
- 4. Repeat steps 2 to 4 until cannot decrease loss function anymore

Update rule

If $C(\boldsymbol{\theta})$ is the cost that we wish to minimize then the gradient descent update rule is

$$\theta^{(k+1)} = \theta^{(k)} - \eta \frac{\partial C}{\partial \theta} \Big|_{k}$$
$$= \theta^{(k)} - \eta \mathbf{g}_{k}$$

where η is referred to as the learning rate, which controls the size of the step taken at each iteration.

Notation alert: We set $\mathbf{g}_k = \nabla_{\theta} C|_k$ to simplify the notation.

Batch update

Sum or average updates across every example, then change the parameter values

$$\theta^{(k+1)} = \theta^{(k)} - \eta \sum_{i=1}^{N} \mathbf{g}_k^{(i)}$$

where N is the number of examples (or data items).

Mini-batch update

- Sum or average updates across a subset of the examples, then change the parameter values
- Examples in each batch are selected at random

$$\theta^{(k+1)} = \theta^{(k)} - \eta \sum_{i=1}^{N_{\text{batch}}} \mathbf{g}_k^{(i)}$$

where $N_{\rm batch}$ is the number of examples (or data items) in a mini-batch.

- > This is particularly useful when dealing with very large datasets
 - Ability to exploit computational efficiencies
- Mini-batches need to be balanced for classes

Stochastic or online gradient desent

- Update parameter values for each training example in turn
- This assumes that sample is i.i.d. (independent, identically distributed)

$$\theta^{(k+1)} = \theta^{(k)} - \eta \mathbf{g}_k^{(i)}$$

where i is the i-th example (or data item).

Assumes that the dataset is highly redundant

The effects of using a subset of data to compute loss

Figure from ATTRIBUTION MISSING

The error surface of a linear neuron

- Error surface is a quadratic bowl for linear neuron with squared error
 - Quadratic bowl view is a good approximation for error surface when dealing with multilayer networks
- Consider a quadratic bowl, does the gradient at a location points to its minima?
 - Only when the quadratic bowl is a circle

Convergence on elliptic quadratic bowls

- The gradient is big in one direction and small in the other direction
 - The minima lies such that we need to travel little along the direction of the big gradient and travel more along the direction of the small gradient.
- This results in a to and fro motion
 - The oscillations diverge if the learning rate is too large
- What is needed?
 - Take large steps along the direction of small, but consistent, gradients
 - Take small steps along the direction of large, but inconsistent, gradients

Learning rate

- $\blacktriangleright~\eta$ too large, and the system might not converge
- \blacktriangleright η too small, and the system might take too long to converge

Too small or too large a learning rate

learning late is too small

learning rate is too large

Too small or too large a learning rate

Figure from ATTRIBUTION MISSING

Changing learning rate mid-training

- Reduce learning rate during training
 - Raduces random fluctuations due to differences in gradient computation over mini-batches
 - Need to be done with care
- Avoids zig-zag behavior

Gradient descent

$$\theta^{(k+1)} = \theta^{(k)} - \eta \mathbf{g}_k$$

- For gradient descent, $C(\theta)$, i.e., the objective, should decrease after every step.
- A common scheme is stop iterations (i.e., declare convergence) if decrease in C(θ) is less than some threshold ε (say 10⁻³) in one iteration.
- General rule of thumb: If gradient descent isn't working, use a smaller η.
- Towards the end of minibatch training, reduce learning rate
 - Prevents oscillations in the final parameter values between different minibatches

Parameter initialization

- Small random values to break symmetry
- When two neurons have exactly same inputs and outputs (i.e., same bias and weights) they get the same gradient and they can cannot learn different features
- Often helps to initialize the incoming weights to be proportional to the square root of fan-in

Shifting the input values

- It is useful to shift to input values such that each component of the input vector has a zero mean throughout
 - Particularly so when using steepest descent algorithms for optimization
- Decorrelate the input dimensions
 - Use PCA
 - Drop dimensions with smallest eigenvalues to achieve some compression
 - Divide the remaining principal components by the square roots of their eigenvalues. For a linear neuron this makes the error surface cirvular.

Common pitfalls

- Large learning rates can make weights very large (positive or negative) and the hidden units may saturate leading to very small derivatives.
 - ▶ This looks like a local minima, but it is actually a plateau.
- For classification networks that use crossentropy losses, the best guessing strategy is to make each output unit always spit out a 1 equal to the proportion of time it should be 1.
 - Network can quickly get stuck in this. This too is a plateau that behaves like a local minima.

Solutions

- Use momentum
- Use adaptive learning rates for each parameter
- Check out the optimization literature to look for more sophisticated methods for minimizing functions, say methods that make use of curvature information.

Exponential Moving Average (EMA)

Given a series of data:

$$\cdots, x^{(3)}, x^{(2)}, x^{(1)}$$

Compute EMA as

$$\langle x \rangle^{(i)} = \alpha x^{(i)} + (1 - \alpha) \langle x \rangle^{(i-1)}$$

where $\alpha \in [0,1]$ and $\langle x \rangle^{(i)}$ is the running average at time i.

Gradient descent

$$\theta^{(k+1)} = \theta^{(k)} - \eta \mathbf{g}_k$$

- Learning rate $\eta=0.0001$

Momentum

Akin to giving a short-term memory to gradient descent

$$\mathbf{m}^{(k)} = \beta \mathbf{m}^{(k-1)} + (1-\beta)\mathbf{g}_k$$
$$\theta^{(k+1)} = \theta^{(k)} - \eta \mathbf{m}^{(k)}$$

- Momentum $\mathbf{m}^{(k)}$ is the first moment (the mean) of gradients at time k
- $\blacktriangleright \ \beta = 0.9$
- Momentum helps with tight ravines in the loss landscap
- Learning rate $\eta = 0.001$

Polyak, Boris. (1964). Some methods of speeding up the convergence of iteration methods. Ussr Computational Mathematics and Mathematical Physics. 4. 1-17. 10.1016/0041-5553(64)90137-5.

Momentum

https://distill.pub/2017/momentum/

Nesterov accelerated gradient

Consider the momentum update rule

$$\theta^{(k+1)} = \theta^{(k)} - \eta \mathbf{m}^{(k)}$$
$$= \theta^{(k)} - \eta \left(\beta \mathbf{m}^{(k-1)} + (1-\beta)\mathbf{g}_k\right)$$

- We know that we will update the parameters using momentum term m^(k-1) and the gradient computed at the current parameter value
- Instead let's update the parameters using the momentum term and compute gradient at the updated parameter value

Nesterov Accelerated Gradient (NAG)

$$\mathbf{m}^{k} = \beta \mathbf{m}^{k-1} + \eta \mathbf{g}_{(k+\beta \mathbf{m}^{(k-1)})}$$
$$\theta^{(k+1)} = \theta^{(k)} - \mathbf{m}^{k}$$

Source G. Hinton lecture 6

Adaptive Gradient (AdaGrad)

Updates the learning rate by dividing it by the square root of cumulative sum of current and past squared gradients

$$G^{(k)} = G^{(k-1)} + \operatorname{diag}(\mathbf{g}_k^2)$$
$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{\eta}{\sqrt{G^{(k)} + \epsilon}}\right) \mathbf{g}_k$$

g²_k denotes element-wise square of gradient vector at step k
 G^(k) is a diagonal matrix.
 G^(k)_{ii} contains sum of squares of derivative w.r.t. parameter θ_i.
 ε = 10⁻⁷ prevents a divison by zero.

John Duchi, Elad Hazan, Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

AdaGrad

- One doesn't need to tune the learning rate manually
- ▶ Often $\eta = 0.01$ is used
- The learning rate shrinks over time, eventually becoming infinitesimally small at which point the model can no longer learn

AdaGrad notation simplification

With some abuse of notation, we re-write AdaGrad as follows

$$v^{(k)} = v^{(k-1)} + \mathbf{g}_k^2$$
$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{\eta}{\sqrt{v^{(k)} + \epsilon}}\right) \mathbf{g}_k$$

- v takes place of G and we assume that the shape of v can be infered from the surrounding context
- We'll stick to this notation for the next little while

Adadelta

- AdaGrad monotonically decreases the learning rate, Adadelta aims to fix this behavior
- Adadelta restricts sum of squared gradients to the previous w steps (in practice it is easier to just maintain the running average)

$$v^{(k)} = \beta_1 v^{(k-1)} + (1 - \beta_1) \mathbf{g}_k^2$$
$$\Delta_k = \frac{\sqrt{u^{(k-1)} + \epsilon}}{\sqrt{v^{(k)} + \epsilon}} \mathbf{g}_k$$
$$\theta^{(k+1)} = \theta^{(k)} - \Delta_k$$
$$u^{(k)} = \beta_2 u^{(k-1)} + (1 - \beta_2) \Delta_k^2$$

- $\blacktriangleright v^{(k)}$ is the second moment (uncentered variance) of gradients up to step k
- u^(k-1) is the second moment (uncentered variance) of the updates up to step k

Adadelta

- $\blacktriangleright~\epsilon \approx 10^{-7}$ prevents a divison by zero.
- ▶ The learning rate also has been eliminated.
- However, some implementations still use a learning rate (see PyTorch)

RMSProp

$$v^{(k)} = \beta v^{(k-1)} + (1-\beta)\mathbf{g}_k^2$$
$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{\eta}{\sqrt{v^{(k)} + \epsilon}}\right)\mathbf{g}_k$$

$$\beta = 0.9$$
 $\epsilon ≈ 10^{-7}$ prevents a divison by zero.
Learning rate $\eta = 0.001$

Adam

$$\mathbf{m}^{(k)} = \beta_1 \mathbf{m}^{(k-1)} + (1 - \beta_1) \mathbf{g}_k$$
$$\hat{\mathbf{m}}^{(k)} = \frac{\mathbf{m}_t}{(1 - \beta_1)}$$
$$v^{(k)} = \beta_2 v^{(k-1)} + (1 - \beta_2) \mathbf{g}_k^2$$
$$\hat{v}^{(k)} = \frac{v_t}{(1 - \beta_2)}$$
$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{\eta}{\sqrt{\hat{v}^{(k)} + \epsilon}}\right) \hat{\mathbf{m}}^{(k)}$$

m_t and v_t are estimates of first moment and second moment of gradients, respectively

Adam

- Compute bias-corrected first and second moments, m̂ and v̂, since m and v are initialized to 0, so they are biased towards 0, especially when 1) β₁ and β₂ are small and 2) during initial timesteps
- $\epsilon \approx 10^{-8}$ prevents a divison by zero.
- $\beta_1 = 0.9$ and $\beta_2 = 0.999$

Vector norms

• The vector norm
$$|\mathbf{x}|_p$$
 for $p = 1, 2, 3, \cdots$

$$|\mathbf{x}|_p = \left(\sum_i |\mathbf{x}_i|_p\right)^{rac{1}{p}}$$

$$hloor$$
 $|{f x}|_\infty$ is a special case

$$|\mathbf{x}|_{\infty} = \max_{i} \mathbf{x}_{i}$$

AdaMax

 \blacktriangleright In Adam $v^{(k)}$ is updated via l_2 norm, we can change it to use l_p norm instead

$$v^{(k)} = \beta_2^p v^{(k-1)} + (1 - \beta_2^p) |\mathbf{g}_k|^p$$

▶ Using large values of p leads to numerical unstability ▶ l_{∞} exhibits stable behavior, however

$$v^{(k)} = \beta_2^{\infty} v^{(k-1)} + (1 - \beta_2^{\infty}) |\mathbf{g}_k|^{\infty}$$
$$= \max\left(\beta_2^{\infty} v^{(k-1)}, |\mathbf{g}_k|\right)$$

AdaMax

No need to compute v̂, since max operation makes v less susceptible to bias towards 0

$$\mathbf{m}^{(k)} = \beta_1 \mathbf{m}^{(k-1)} + (1 - \beta_1) \mathbf{g}_k$$
$$\hat{\mathbf{m}}_t = \frac{\mathbf{m}^{(k)}}{(1 - \beta_1)}$$
$$v^{(k)} = \max\left(\beta_2^{\infty} v^{(k-1)}, |\mathbf{g}_k|\right)$$
$$\theta^{(k+1)} = \theta^{(k)} - \left(\frac{\eta}{\sqrt{v^{(k)} + \epsilon}}\right) \hat{\mathbf{m}}^{(k)}$$

$$β_1 = 0.9$$
 $β_2^{\infty} = 0.99$
 $η = 0.001$

Other approaches

Nesterov-accelerated Adaptive Momentum Estimation (NADAM)

Combines Adam and NAG

AMSGrad

 Uses the maximum of past squared gradients rather then the uncentered variance of these gradients (i.e., average of the past squared gradients)

And many others

- See here for some recent gradient descent based algorithms (*last accessed on Feb 4, 2023*)
- Check out this for playing around with different algorithms (*last accessed on Feb 4, 2023*)

Newton's method

Problem: Given $f(\theta)$, find θ such that $f(\theta) = 0$

Observation: Gradient is the slope of the function.

$$f'(\theta^{(0)}) = \frac{f(\theta^{(0)})}{\Delta} = \frac{f(\theta^{(0)})}{\theta^{(1)} - \theta^0}$$

Newton's method

An iterative method to solve the above problem is:

- 1. Start with an initial value of $\boldsymbol{\theta}$
- 2. Update θ as follows

$$\theta^{(1)} = \theta^{(0)} - \frac{f(\theta^{(0)})}{f'(\theta^{(0)})}$$

3. Repeat until $f(\theta)\approx 0$ or maximum number of iterations have reached.

Using Newton's method to minimize a function

- We are interested in maximizing or minimize a function, e.g., we minimize the negative log likelihood to estimate the parameters.
- Gradient is 0 at maxima, minima and saddle points of a function.
- We can use the following update rule to maximize or minimize a function.

$$\theta^{(1)} = \theta^{(0)} - \frac{C'(\theta^{(0)})}{C''(\theta^{(0)})}$$

► This update rule is a direct application of the Newton's method and finds $C'(\theta) = 0$.

Newton's method to minimize a function in higher dimensions

Using Hessian we can write down the update rule as follows

$$\theta^{(k+1)} = \theta^{(k)} - \mathbf{H}_k^{-1} \mathbf{g}_k$$

where $\mathbf{H}_k = \nabla^2 C|_k$ denotes Hessian at step k and \mathbf{g}_k denotes gradient at step k.

Summary

- Gradient descent
 - Batch update
 - Online or stochastic
- Learning rate
- Momentum
- Hessian
- These methods work well in practice
- All of these methods converge as long as the learning rate is sufficiently small
- ► The speed of convergence differs great, however
- Newton's method converges quadratically
 - Every iteration of Newton's method doubles the number of digits to which your solution is accurate, e.g., error goes from 0.01 to 0.0001 in one step
 - This only holds when already close to the solution
- $\blacktriangleright \theta$ is initialized randomly

Copyright and License

©Faisal Z. Qureshi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.