Optimization
Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

1 OntarioTech

UNIVERSITY

Acknowledgements

» Lecture notes by Hinton and others found at CS UofT.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Lesson Plan

» Minimizing loss and the need for numerical techniques
Gredient desent

v

» Recipe
» Update rule
Batch update
Mini-batch update
Stochastic (or online) gradient descent
Learning rate
» Changing learning rate to achieve faster convergence

vvyyvyy

v

Momentum and other variants of gradient descent
Newton's method
» How to choose a step size?

v

» Momentum

Gradient and Hessian

Consider a function
flxr, -+ ,2q) €R

Gradient of f is (caputres slope of a function at a point)
of
ox1
Vi=|:|eRr?
of
Ozq

Hessian of f is (caputres curvature of a function at a point)

ol A)

8x% 0x10x4
H=V2f=| : - |erdd

op L oy

Oxg0x1 5;3

Jacobian

Consider a vector-valued function
f(.%'l,.TQ,.ﬁUg, T 7xd) = (fl? fQ’ f37 T 7fn) eR"

Jacobian of f is

aibl 6acd
J=1: o | e rrxd
Ofa ... Ofa

Ox1 oxyg

Example problem

Consider data points (1), y(), (3 y@) ... () 4N Our
goal is to learn a function f(x) that returns (predict) the value y
given an x.

Choose a model
We assume that a linear model of the form y = f(z) = 6y + 61z
best describes our data.

Problem
How do we determine the degree of “fit" of our model?

Example problem

Loss/cost/objective function measures the degree of fit of a model
to a given data.

Least squares error

MZ

/\

_/
[\

007 91
=1

Task (learning)

Our task is to find values for 6y and 6; (model parameters) to
minimize the cost.

Example problem
Minimizing cost

(6o, 61) = argmin C(6)
(60791)

This is a convex function. We can solve for 6y and #; by setting

oCc __ oCc __
%—Oanda—el—o

100 —100

Minimizing cost and the need for numerical techniques

In general cost functions are not convex and it is not possible to
find a minima (there are absolutely no guarantees about finding the
global minima) using analytical methods

Figure from ATTRIBUTION MISSING

Gradient descent

A very powerful method of training the model parameters by
minimizing the loss function. One of the simplest optimization
methods. It is also referred to as steepest descent.

C@) LT .
. Sl ;1)?[591,&,5’\»\
7

Lotad munima,
Qyuﬁ,,-j A

6

W

Gradient descent recipe

1. Initialize model parameters randomly (in our case 0)

2. Compute gradient of the loss function

3. Take a step in the direction of negative gradient (decreasing
loss function) and update parameters

4. Repeat steps 2 to 4 until cannot decrease loss function anymore

Update rule

If C(0) is the cost that we wish to minimize then the gradient
descent update rule is

oC
plk+1) — g(k) _ 2
o6 |,

=0%) — gy,

where 1) is referred to as the learning rate, which controls the size of
the step taken at each iteration.

Notation alert: We set g, = V|, to simplify the notation.

Batch update

» Sum or average updates across every example, then change the
parameter values

e(k—i-l) —n Zg

where N is the number of examples (or data items)

Mini-batch update

» Sum or average updates across a subset of the examples, then
change the parameter values

> Examples in each batch are selected at random

Npatch

9(k+1) —n Z g

where Npaien is the number of examples (or data items) in a
mini-batch.

» This is particularly useful when dealing with very large datasets
> Ability to exploit computational efficiencies

» Mini-batches need to be balanced for classes

Stochastic or online gradient desent

» Update parameter values for each training example in turn
» This assumes that sample is i.i.d. (independent, identically
distributed)

gk+1) _ g(k) _ ng;ii)

where i is the i-th example (or data item).
> Assumes that the dataset is highly redundant

The effects of using a subset of data to compute loss

Figure from ATTRIBUTION MISSING

The error surface of a linear neuron

» Error surface is a quadratic bowl for linear neuron with squared
error
» Quadratic bowl view is a good approximation for error surface
when dealing with multilayer networks
» Consider a quadratic bowl, does the gradient at a location
points to its minima?
» Only when the quadratic bowl is a circle

SN 7
/ NN 7 /
! III’ N Yo /;/ 4
L [_ f.' .l || /;;,} //
(ALY — /' ! // ////
o N y
S J
7
//) /

S -

Convergence on elliptic quadratic bowls

» The gradient is big in one direction and small in the other
direction
» The minima lies such that we need to travel little along the
direction of the big gradient and travel more along the direction
of the small gradient.
» This results in a to and fro motion
» The oscillations diverge if the learning rate is too large

» What is needed?

P Take large steps along the direction of small, but consistent,
gradients

» Take small steps along the direction of large, but inconsistent,
gradients

Learning rate

P> 1 too large, and the system might not converge
» 1 too small, and the system might take too long to converge

Too small or too large a learning rate

learning late is too small learning rate is too large

Too small or too large a learning rate

Figure from ATTRIBUTION MISSING

Changing learning rate mid-training

» Reduce learning rate during training

» Raduces random fluctuations due to differences in gradient
computation over mini-batches
» Need to be done with care

> Avoids zig-zag behavior

reduce 10
learning rate

|

error

epoch

Figure from ATTRIBUTION MISSING -30 - - L
—-30 =20 =10 O 10 20

Figure from ATTRIBUTION MISSING

Gradient descent

g+ — g(k) _ pg,

» For gradient descent, C'(6), i.e., the objective, should decrease
after every step.

» A common scheme is stop iterations (i.e., declare convergence)
if decrease in C'(6) is less than some threshold € (say 10~3) in
one iteration.

» General rule of thumb: If gradient descent isn't working, use a
smaller 7.

» Towards the end of minibatch training, reduce learning rate

» Prevents oscillations in the final parameter values between
different minibatches

Parameter initialization

» Small random values to break symmetry

» When two neurons have exactly same inputs and outputs (i.e.,
same bias and weights) they get the same gradient and they
can cannot learn different features

» Often helps to initialize the incoming weights to be
proportional to the square root of fan-in

Shifting the input values

» It is useful to shift to input values such that each component
of the input vector has a zero mean throughout
» Particularly so when using steepest descent algorithms for
optimization
» Decorrelate the input dimensions
> Use PCA
» Drop dimensions with smallest eigenvalues to achieve some
compression
» Divide the remaining principal components by the square roots
of their eigenvalues. For a linear neuron this makes the error
surface cirvular.

Common pitfalls

» Large learning rates can make weights very large (positive or
negative) and the hidden units may saturate leading to very
small derivatives.

» This looks like a local minima, but it is actually a plateau.

» For classification networks that use crossentropy losses, the
best guessing strategy is to make each output unit always spit
out a 1 equal to the proportion of time it shoudl be 1.

» Network can quickly get stuck in this. This too is a plateau that
behaves like a local minima.

Solutions

» Use momentum

» Use adaptive learning rates for each parameter

» Check out the optimization literature to look for more
sophisticated methods for minimizing functions, say methods
that make use of curvature information.

Exponential Moving Average (EMA)
Given a series of data:

Ca® 2@ 0
Compute EMA as
)V = az® + (1 — a)(z)~Y

where a € [0,1] and () is the running average at time 1.

Gradient descent

g+ — g(k) _ pg,

- Learning rate n = 0.0001

Momentum
P> Akin to giving a short-term memory to gradient descent

m® = gm*Y 4 (1 -)g;
o+ = k) _ ()

» Momentum m(*) is the first moment (the mean) of gradients
at time £

> 3=0.9

» Momentum helps with tight ravines in the loss landscap

» Learning rate n = 0.001

Polyak, Boris. (1964). Some methods of speeding up the convergence of iteration methods. Ussr Computational
Mathematics and Mathematical Physics. 4. 1-17. 10.1016/0041-5553(64)90137-5.

Momentum

https://distill.pub/2017 /momentum/

https://distill.pub/2017/momentum/

Nesterov accelerated gradient
» Consider the momentum update rule
o+ — (k) _ i ()
= 0% —n (Bm* + (1 - Bgx)

> We know that we will update the parameters using momentum
term m(*~1) and the gradient computed at the current
parameter value

» Instead let's update the parameters using the momentum term
and compute gradient at the updated parameter value

Nesterov Accelerated Gradient (NAG)

m* = Bm"! + N8 (k+Amck—D)

gk+1) — gk) _

Source G. Hinton lecture 6

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adaptive Gradient (AdaGrad)

» Updates the learning rate by dividing it by the square root of
cumulative sum of current and past squared gradients

G = =Y 4 diag(g?)

glk+l) _gk) _ (T
VGE) + ¢ Sk

> gi denotes element-wise square of gradient vector at step k
» G is a diagonal matrix.
> Ggf) contains sum of squares of derivative w.r.t. parameter 0;.

» ¢ = 1077 prevents a divison by zero.

John Duchi, Elad Hazan, Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

AdaGrad

» One doesn't need to tune the learning rate manually

» Often n = 0.01 is used

» The learning rate shrinks over time, eventually becoming
infinitesimally small at which point the model can no longer
learn

AdaGrad notation simplification

» With some abuse of notation, we re-write AdaGrad as follows

k) = k1) 4 g2

g+l —gk) _ [T
o

> v takes place of G and we assume that the shape of v can be
infered from the surrounding context
> We'll stick to this notation for the next little while

Adadelta

» AdaGrad monotonically decreases the learning rate, Adadelta
aims to fix this behavior

» Adadelta restricts sum of squared gradients to the previous w
steps (in practice it is easier to just maintain the running
average)

A /u(k—l) +€
Ap = ————gx
v(F) 4 ¢

o+ — g(k) _ A,

ul®) = Bou1 4 (1 - By) A}

» u(*) is the second moment (uncentered variance) of gradients
up to step k

» 41 is the second moment (uncentered variance) of the
updates up to step k

Adadelta

> ¢~ 1077 prevents a divison by zero.

» The learning rate also has been eliminated.

» However, some implementations still use a learning rate (see
PyTorch)

RMSProp

o) = Bk 4 (1 - B)g?

gk+1) k) _ (1
vk) + € B
> 5 =09

> ¢~ 1077 prevents a divison by zero.
» Learning rate n = 0.001

Adam

m®) = gm* + (1 - B))g;

o (k) _ my

S (1=5)
v® = By 4 (1 - Bo)gy
gy — Yt

(1= a)

glk+1) — k) _ (") (R
o) + €

» m; and v; are estimates of first moment and second moment
of gradients, respectively

Adam

» Compute bias-corrected first and second moments, 1 and 7,
since m and v are initialized to 0, so they are biased towards 0,
especially when 1) 51 and (33 are small and 2) during initial
timesteps

» ¢~ 10~® prevents a divison by zero.

» 51 =0.9 and B = 0.999

Vector norms

» The vector norm |x|, for p =1,2,3,---

1
p
x|, = (Z |Xi|p>
i
> |X|oo is a special case

|X|oo = max x;
1

AdaMax

» In Adam v is updated via lo norm, we can change it to use
l, norm instead

o® = oD+ (1 - 38) g

» Using large values of p leads to numerical unstability
» [exhibits stable behavior, however

v®) = geo®=D 4 (1 — 55°) gy *
= max (5520, |gy|)

AdaMax

» No need to compute v, since max operation makes v less
susceptible to bias towards 0

m® = gm*=Y (1 - 8))g
)

t = T~

(1—p1)
o) = max (83704, g)

glkt1) _ k) _ (’7) o (8)
Vol 1)

> B =09
> 35° =0.99
> n=0.001

Other approaches

Nesterov-accelerated Adaptive Momentum Estimation
(NADAM)

» Combines Adam and NAG

AMSGrad
» Uses the maximum of past squared gradients rather then the
uncentered variance of these gradients (i.e., average of the past
squared gradients)

And many others

> See here for some recent gradient descent based algorithms
(last accessed on Feb 4, 2023)

» Check out this for playing around with different algorithms
(last accessed on Feb 4, 2023)

https://johnchenresearch.github.io/demon/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

Newton's method
Problem: Given f(0), find 6 such that f(6) =0

Observation: Gradient is the slope of the function.

: _f09) ()

/f(0)
/
769 A
— f/(@(O)) B /,’//
A /2 /
\ / //
"'\ / / //
\ / g //
) o) 0©

Newton's method

An iterative method to solve the above problem is:

1. Start with an initial value of 6
2. Update 6 as follows

3. Repeat until f(#) ~ 0 or maximum number of iterations have
reached.

Using Newton's method to minimize a function

» We are interested in maximizing or minimize a function, e.g.,
we minimize the negative log likelihood to estimate the
parameters.

» Gradient is 0 at maxima, minima and saddle points of a
function.

> We can use the following update rule to maximize or minimize

a function.
0 C'(0")

C’”(H(O))

» This update rule is a direct application of the Newton's method
and finds C’(0) = 0.

o) =9

Newton's method to minimize a function in higher
dimensions

Using Hessian we can write down the update rule as follows
g(k+1) _ g(k) _ lelgk

where Hy, = V2C|k denotes Hessian at step k& and gy denotes
gradient at step k.

Summary

| 2

vVvyyvyYVvyy

v

Gradient descent
» Batch update
» Online or stochastic
Learning rate
Momentum
Hessian
These methods work well in practice
All of these methods converge as long as the learning rate is
sufficiently small
The speed of convergence differs great, however
Newton's method converges quadratically
» Every iteration of Newton's method doubles the number of
digits to which your solution is accurate, e.g., error goes from
0.01 to 0.0001 in one step
» This only holds when already close to the solution

0 is initialized randomly

Copyright and License
©Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

