
1 / 26

Neural networks
Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 26

Feed forward neural networks
I Approximate some function y = f∗(x) by learning parameters
θ s.t. ỹ = f(x; θ)

I Feed forward neural networks can be seen as directed acyclic
graphs

y = f(x) = f (L)(· · · f (3)(f (2)(f (1)(x))))

I Training examples specify the output of the last layer
I Network needs to figure out the inputs/outputs for the hidden

layers

3 / 26

Extending linear models
How can we extend linear models?

I Specify a very general φ s.t. the model becomes y = θTφ(x)
I Problem with generalization
I Difficult to encode prior information needed to solve AI-level

tasks
I Engineer φ for the task at hand

I Tedious
I Difficult to transfer to new tasks

I Neural networks approaches
I y = f(x; θ, w) = φ(x; θ)Tw i.e. use parameters θ to learn φ

and use w to map φ(x) to the desired output y
I The training problem is non-convex
I Key advantage: a designer just need to specify the right family

of functions and not the exact function φ

4 / 26

Classical artificial neural networks

I Shallow and wide
I One hidden layer can

represent any function
I Focus was on efficient

ways to optimize
(train)

5 / 26

Classical artificial neural networks
We can represent networks comprising a single hidden layer as

y = fo (Wohfh (Wihx)) .

Here, x ∈ Rd is the d-dimensional input, Wih ∈ Rdh×d is the
input-to-hidden-layer weight matrix, dh is the size of the hidden
layer, Who ∈ R1×dh is the hidden-layer-to-output weight matrix,
and fh and fo are activations functions for hidden layer and output,
respectively.
Activation functions take a vector as input and return a vector of
the same size. The function is applied element-wise.
Traditionally, possible choices for fh are:

I hyperbolic tangent; and
I sigmoid.

6 / 26

Activation functions (artificial neural networks)
I The activation functions for output:

I Identity function for regression;
I Sigmoid for binary classification; and
I Softmax for multi-class classification.

I The activation functions for hidden layers:
I tanh (allows for negative output values); and
I sigmoid.

7 / 26

Example: a regression network
I Input: 1D, real numbers
I Ouput: 1D, real numbers
I Hidden layer size: 2
I Number of weights: 7
I Loss: MSE
I Probabilistic view of line fitting

8 / 26

Example: a classification network
I Input: 2D, real numbers
I Output: 1D, class labels 0 or 1
I Hidden layer size: 2
I Number of weights: 9
I Loss: Cross-entropy
I Data likelihood under Bernoulli distribution

9 / 26

Current view – deep neural networks
I Multi-layer networks

I These networks are deeper than these are wider
I Hierarchical representation

I Reduces semantic gap
I Deep networks outperform humans on many tasks
I Access to data
I Advances in computer science, physics and engineering

10 / 26

Gradient-based learning in neural networks
I Non-linearities of neural networks render most cost functions

non-convex
I Use iterative gradient based optimizers to drive cost function to

lower values
I Gradient descent applied to non-convex cost functions has no

guarantees is sensitive to initial conditions
I Initialize weights to small random values
I Initialize biases to zero or small positive values

11 / 26

Cost functions
I Most modern neural networks are trainined using maximum

likelihood principle
I When parametric values defines a distribution p(y|x; θ) the

negative log-likelihood is the cross-entropy between the training
data and model predictions

I Advantage of using maximum likelihood: we get cost for free,
which is − log p(y|x)

I Gradient of the cost function must be large (and predictable)

Another advantage of using negative log likelihood as a cost
function
When hidden or output units saturate, their gradients become really
small, creating difficulties for gradient based learning methods.
Many output units contain and exp(), for example softmax, an
advantage of using negative log likelihood is also that it undoes the
effects of exp() preventing saturation

12 / 26

Output units
The role of the output units is to provide some additional
transformations from the features computed by the hidden layers to
complete the task at hand:

y = f(h),

where h = f(x; θ) are the features computed by the hidden layer.

I Linear units
I Sigmoid units
I Softmax units

13 / 26

Hidden units
I ReLU
I Leaky ReLU
I Parametric ReLU
I Maxout
I Dropout
I Sine
I Logistic, sigmoid, hyperbolic tangent

I Rarely used as hidden units these days, except for recurrent
networks

14 / 26

Activation functions plots

15 / 26

Layered architectures
As long as we have differentiable layers, i.e., we can compute ∂zl+1

k

∂zl
i

,
we can use backpropagation to update the parameters θ to minimize
the cost C(θ).

16 / 26

Backpropagation
I Set z1 equal to input x.
I Forward pass:

I Compute z2, z3, · · · layers 1, 2, · · · activations
I Set δ at the last layer equal to 1

I Backward pass:
I Backpropagate δL, δL−1, · · · , δ2 (all the way to first layer)
I Compute ∇θC(θ)

I Update θ
I Repeat

17 / 26

Layered architecture: consequences
I Compositionality
I Reuse
I Ease of constructing your own layers

A neural network can itself be treated as a layer within another
neural network (recursion). This allows us to build new neural
networks using exisitng (and sometimes pre-trained) models.

18 / 26

This is all good in theory, but what about practice
GPUs
I Support fast vectorized processing

Autodiff
I Techniques to evaluate the derivative of a computer program
I Autodiff example on Google Colab

https://colab.research.google.com/drive/1iDYz4VjFOZQvpxfICPZOc481ll7Vu9Sw?usp=sharing

19 / 26

Autodiff example
import torch
import numpy as np

def sigmoid(x):
return 1. / (1. + torch.exp(-x))

def derivative_of_sigmoid(x):
"Derivative of a sigmoid (analytical)"
return sigmoid(x) * (1 - sigmoid(x))

input
x = torch.linspace(-10,10,100, requires_grad=True)

derivative of a sigmoid
dx = derivative_of_sigmoid(x)

PyTorch program that implements sigmoid
z = sigmoid(x)

using PyTorch autodiff to compute the derivative of the sigmoid
z_ = torch.sum(z) # because backward can only be called on scalers
z_.backward() # the backward pass

plt.figure(figsize=(8,8))
plt.title('Using PyTorch to compute the derivative of a sigmoid')
plt.plot(x.detach().numpy(), z.detach().numpy(), 'k', label='sigmoid')
plt.grid()
plt.plot(x.detach().numpy(), dx.detach().numpy(), 'b.', label='derivative computed analytically')
plt.plot(x.detach().numpy(), x.grad.detach().numpy(), 'r', label='derivative using autodiff')
plt.xlabel('x')
plt.legend();

20 / 26

Regularization for deep networks
Regularization: any modification to reduce generalization error but
not the training errors:

I extra constraints and penalties
I prior knowledge

Deep learning is applied to extremely complex tasks. Consequently,
regularization is not as simple as controlling the number of
parameters

21 / 26

Regularization for deep networks
I Parameter norm penalties
I Data augmentation

I Fake data
I Successful in classification/object recognition tasks

I Noise injection
I Applying random noise to the inputs
I Applying random noise to hidden layers’ inputs

I Data augmentation at multiple levels of abstraction
I Data augmentation almost always improves the performance of

a neural network
I Noise added to the weights

I Recurrent neural networks
I A practical stochastic implementation of Bayesian inference

over weights
I Noise can also bve added to target outputs

22 / 26

Summary
I Different ways to interpret a neural network

I Compositions of non-linear functions
I Computational graphs
I Comprised of differentiable layers

I Where possible compose new networks using existing networks

23 / 26

Summary
I Backpropagation: strategy for computing gradients for

gradient-based learning
I Use autodiff to automatixally compute gradients for each layer

I Vast number of “deep learning” frameworks (e.g., TensorFlow,
Theano, PyTorch, etc.); start with those first

24 / 26

Summary
I Controlling model complexity
I Deep learning

I Loosely speaking, neural networks with several hidden layers
I Convolutional layers: used for image processing
I Fully connected layers: often used at the end for regression or

classification

25 / 26

Readings
I Ch. 6-9 of Deep Learning by I. Goodfellow et al.

26 / 26

Copyright and License
©Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

