Linear layers

Re-aseite etwis as matrix-vector product

$$
\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{lll}
\omega_{11} & \omega_{12} & \omega_{13} \\
\omega_{21} & \omega_{22} & \omega_{23}
\end{array}\right]
$$

Let's re-write this lveair layer to handle mini-batches

$$
\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right] \rightarrow \square\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22} \\
y_{31} & y_{23}
\end{array}\right]
$$

Babches

And in the matrici-vector form
Batches

$$
\begin{array}{rl}
{\left[\left[\begin{array}{lll}
y_{11} & y_{21} & y_{31} \\
y_{12} & y_{22} & y_{32}
\end{array}\right]\right.} & =\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{21} & x_{22}
\end{array}\right]\left[\begin{array}{lll}
\omega_{11} & \omega_{12} & \omega_{13} \\
\omega_{21} & \omega_{22} & \omega_{23}
\end{array}\right] \\
y & x
\end{array}
$$

Tor a linear layer, $Y=x \omega$ (Trouvard f_{n}.)
In order to be able to backprop, we need to compute $\frac{\partial c}{\partial x}$ and $\frac{\partial c}{\partial w}$
Recall khat we already have $\frac{\partial C}{\partial y}$ (thin was backpropagated)

In ow example, $\frac{\partial c}{\partial y}$ is the gradient whose sine is the sine of $Y . C$ is a scalar. Therefore, $\quad \frac{\partial c}{\partial y} \in \mathbb{R}^{2 \times 3}$

$$
\frac{\partial c}{\partial y}=\left[\begin{array}{lll}
\frac{\partial c}{\partial y_{11}} & \frac{\partial c}{\partial y_{21}} & \frac{\partial c}{\partial y_{31}} \\
\frac{\partial c}{\partial y_{12}} & \frac{\partial c}{\partial y_{22}} & \frac{\partial c}{\partial y_{32}}
\end{array}\right]
$$

By applying chain-rule, we get

$$
\frac{\partial c}{\partial x}=\frac{\partial c}{\partial y} \cdot \frac{\partial y}{\partial x}
$$

Following from above

$$
\frac{\partial c}{\partial x}=\left(\begin{array}{ll}
\frac{\partial c}{\partial x_{11}} & \frac{\partial c}{\partial x_{21}} \\
\frac{\partial c}{\partial x_{12}} & \frac{\partial c}{\partial x_{22}}
\end{array}\right)
$$

Let's thy to unpack $\frac{\partial y}{\partial x}$. We begin by considering ene one batch first.

$$
\left[\begin{array}{lll}
y_{11} & y_{21} & y_{31}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21}
\end{array}\right]\left[\begin{array}{lll}
\omega_{11} & \omega_{12} & \omega_{13} \\
\omega_{21} & \omega_{22} & \omega_{23}
\end{array}\right]
$$

This suggests that $\frac{\partial y}{\partial x}$ is actually a Jacobian.

$$
\frac{\partial y}{\partial x}=\left[\begin{array}{ll}
\frac{\partial y_{11}}{\partial x_{11}} & \frac{\partial y_{11}}{\partial x_{21}} \\
\frac{\partial y_{21}}{\partial x_{11}} & \frac{\partial y_{21}}{\partial x_{21}} \\
\frac{\partial y_{31}}{\partial x_{11}} & \frac{\partial y_{31}}{\partial x_{21}}
\end{array}\right]=\left[\begin{array}{ll}
\omega_{11} & \omega_{21} \\
\omega_{12} & \omega_{22} \\
\omega_{13} & \omega_{23}
\end{array}\right]=\omega^{\top}
$$

Now let's try to dig a little deeper. to see chat is $\frac{\partial c}{\partial x_{11}}$?

$$
\begin{aligned}
\frac{\partial c}{\partial x_{11}} & =\frac{\partial c}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{11}}+\frac{\partial c}{\partial y_{21}} \frac{\partial y_{21}}{\partial x_{11}}+\frac{\partial c}{\partial y_{31}} \frac{\partial y_{31}}{\partial x_{11}} \\
& =\left[\begin{array}{lll}
\frac{\partial c}{\partial y_{11}} & \frac{\partial c}{\partial y_{21}} & \frac{\partial c}{\partial y_{31}}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial y_{11}}{\partial x_{11}} \\
\frac{\partial y_{21}}{\partial x_{11}} \\
\frac{\partial y_{21}}{\partial x_{11}}
\end{array}\right]
\end{aligned}
$$

We can re-meite it for every dimension of a single sample.

$$
\left[\begin{array}{ll}
\frac{\partial c}{\partial x_{11}} & \frac{\partial c}{\partial x_{21}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial c}{\partial y_{1}} & \frac{\partial c}{\partial y_{21}} & \frac{\partial c}{\partial y_{31}}
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial y_{11}}{\partial x_{11}} & \frac{\partial y_{11}}{\partial x_{21}} \\
\frac{\partial y_{21}}{\partial x_{11}} & \frac{\partial y_{21}}{\partial x_{21}} \\
\frac{\partial y_{31}}{\partial x_{11}} & \frac{\partial y_{31}}{\partial x_{21}}
\end{array}\right]
$$

$$
\frac{\partial c}{\partial x}=\frac{\partial c}{\partial y} w^{\top}
$$

This can be easily extended to the minibatch.

$$
\left[\begin{array}{ll}
\frac{\partial c}{\partial x_{11}} & \frac{\partial c}{\partial x_{21}} \\
\frac{\partial c}{\partial x_{12}} & \frac{\partial c}{\partial x_{22}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial c}{\partial y_{11}} & \frac{\partial c}{\partial y_{2 c}} & \frac{\partial c}{\partial y_{31}} \\
\frac{\partial c}{\partial y_{12}} & \frac{\partial c}{\partial y_{22}} & \frac{\partial c}{\partial y_{32}}
\end{array}\right] w^{\top}
$$

We can similarly find $\frac{\partial C}{\partial W}$.
Useful properties of hirer layers.

- Global context. Every output depends upon every input.
- Information mixim
- Frequently used as the last layer for many commonly used networks.
- Note that the above description agnores the activation functions.

