Maximum Likelihood
Topics in Digital Media

Faisal Qureshi
Probabilistic view of linear regression

We now turn our attention to probabilistic view of linear regression

Using vector calculus

\(\Theta: (1.811322, 0.524238) \)
Univariate Gaussian distribution

\[N(x|\mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right) \]

\(\mu \) is the center of mass or mean

\(\sigma^2 \) is the variance

\(\mu \) and \(\sigma^2 \) are sufficient statistics

Sampling from a Gaussian

\[x \sim N(\mu, \sigma^2) \]
Multivariate Gaussian distribution

Gaussian distribution in \(d \)-dimensions

\[
\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{d/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right)
\]

\(\mathbf{x}, \mu \in \mathbb{R}^d \) and \(\Sigma \in \mathbb{R}^{d \times d} \)

Example: Gaussian in 2D
Covariance

Covariance between two random variables X and Y measures the degree to which these variables are linearly related.

$$\text{cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$\mathbb{E}[X]$ is the *expected* value of the random variable X.

$$\mathbb{E}[X] = \int xp(x)dx = \mu$$
Covariance matrix Σ

If $\mathbf{x} \in \mathbb{R}^d$ random vector, its covariance matrix Σ is defined as follows:

$$
\Sigma = \text{cov}[\mathbf{x}] =
\begin{bmatrix}
\text{var}[X_1] & \text{cov}[X_1, X_2] & \cdots & \text{cov}[X_1, X_d] \\
\text{cov}[X_2, X_1] & \text{var}[X_2] & \cdots & \text{cov}[X_2, X_d] \\
\vdots & \vdots & \ddots & \vdots \\
\text{cov}[X_d, X_1] & \text{cov}[X_d, X_2] & \cdots & \text{var}[X_d]
\end{bmatrix}
$$
Likelihood example

Consider the points: \(y_1 = 1, \ y_2 = 0.5 \) and \(y_3 = 1.5 \). The points are drawn from a Gaussian with unknown \(\text{mean } \theta \) and \(\sigma^2 = 1 \).

\[y_i \sim \mathcal{N}(\theta, 1) \]

Points are independent so

\[
P(y_1, y_2, y_3|\theta) = P(y_1|\theta)P(y_2|\theta)P(y_3|\theta)
\]

Our goal is to find the Gaussian (i.e., find its mean, since variance is already given) that maximizes the \textit{likelihood} of this data.

\[\text{best}_\mu = 0.959596 \]
\[\text{max}_{\text{likelihood}} = 0.049328 \]
Linear regression

Consider data points \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(N)}, y^{(N)})\). Our goal is to learn a function \(f(x)\) that returns (predict) the value \(y\) given an \(x\).
The likelihood for linear regression

Let’s assume that targets $y(i)$ are corrupted by Gaussian noise with 0 mean and σ^2 variance

$$y(i) = \theta^T x(i) + \mathcal{N}(0, \sigma^2)$$

$$= \mathcal{N} \left(\theta^T x(i), \sigma^2 \right)$$

In higher dimensions, we write:

$$y(i) = \mathcal{N} \left(\theta^T x(i), \sigma^2 \right)$$

Why assume Gaussian noise?

- Mathematically convenient
- A reasonably accurate assumption in practice
- Central Limit Theorem
The likelihood for linear regression

Under the assumption that each \(y^{(i)} \) is i.i.d., we can write the likelihood of \(y \) given data \(X \) as follows:

\[
p(y|X; \theta, \sigma) = \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}; \theta, \sigma)
\]

\[
= \prod_{i=1}^{n} (2\pi\sigma^2)^{-1/2} e^{-\frac{1}{2\sigma^2} (y^{(i)} - \theta^T x^{(i)})^2}
\]

\[
= (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \theta^T x^{(i)})^2}
\]

\[
= (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} (y - X\theta)^T (y - X\theta)}
\]

Aside: the “;” above indicate that we are following the frequentist approach, and we do not treat \(\theta \) as a random variable. Rather we view \(\theta \) as having some true value that we are trying to estimate.
Probability of data given parameters

Loss for linear regression

\[C(\theta) = (y - X\theta)^T (y - X\theta) \]

Probability of data given parameters is related to the loss for linear regression that we obtained before.
Maximum likelihood estimation (1)

The maximum likelihood estimate (MLE) of θ is obtained by maximizing $p(y|X, \theta, \sigma)$

$$
\theta_{\text{ML}} = \arg \max_{\theta} \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}; \theta, \sigma)
$$

Log likelihood

$$
p(y|X; \theta, \sigma) = (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} (y-X\theta)^T(y-X\theta)}
$$
Maximum likelihood estimation (2)
Making predictions using MLE

For a previously unseen data x^*, the target y^* can be obtained as follows:

$$y^* \sim \mathcal{N}(\theta^T_{ML}x^*, \sigma^2)$$
Entropy

Entropy H is a measure of uncertainty associated with a random variable.

$$H(X) = - \sum_x p(x|\theta) \log p(x|\theta)$$

Example

Entropy of a Gaussian in D dimensions

$$H(\mathcal{N}(\mu, \Sigma)) = \frac{1}{2} \ln \left[(2\pi e)^D |\Sigma| \right]$$
Kullback-Leibler divergence

Kullback-Leibler (KL) divergence is a measure of how much two probability distributions diverge from each other.

For discrete probability distributions

\[
D_{KL} (P\|Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}
\]

For continuous probability distributions

\[
D_{KL} (P\|Q) = \int p(x) \log \frac{p(x)}{q(x)} dx
\]
Kullback-Leibler divergence

MLE: For i.i.d. data from some distribution $p(x | \theta_0)$, the MLE minimizes the KL divergence (KULLBACK-LEIBLER DIVERGENCE).

$$\hat{\theta} = \arg \max_{\theta} \prod_{i=1}^{m} p(x^{(i)} | \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{m} \log p(x^{(i)} | \theta)$$

$$= \arg \max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log p(x^{(i)} | \theta)$$

$$- \frac{1}{m} \sum_{i=1}^{m} \log p(x^{(i)} | \theta_0)$$

$$= \arg \max_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log \frac{p(x^{(i)} | \theta)}{p(x^{(i)} | \theta_0)}$$

$$= \arg \min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log \frac{p(x^{(i)} | \theta_0)}{p(x^{(i)} | \theta)}$$

$$= \arg \min_{\theta} \int \log \frac{p(x | \theta_0)}{p(x | \theta)} \, dx$$
It turns out that for i.i.d. (independant, identically distributed) data from a some (unknown true) distribution $p(x|\theta_{\text{True}})$ MLE minimizes the Kullback-Leibler (KL) divergence.
Ridge regression and Bayes rule

Previously we saw the loss function for ridge regression

\[C(\theta) = (y - X\theta)^T(y - X\theta) + \delta^2 \theta^T \theta \]

We can cast the above in probabilistic terms

\[p(y|x, \theta) = \frac{1}{Z_1} e^{-(y-X\theta)^T(y-X\theta)} \]

Then

\[p(\theta) = \frac{1}{Z_2} e^{-\delta^2 \theta^T \theta} \]

does not become a *prior*.
Summary

- We developed a probabilistic view of linear regression.