Logistic Regression
Advanced Topics in High-Performance Computing

Faisal Qureshi
Logistic regression

Logistic regression is a binary classifier

In binary classification, the target variable y takes on values in $\{0, 1\}$
Bernoulli distribution

A Bernoulli random variable X takes values in $\{0, 1\}$

$$\Pr(X|\theta) = \begin{cases} \theta & \text{if } X = 1 \\ 1 - \theta & \text{otherwise} \end{cases}$$

$$= \theta^X (1 - \theta)^{1-X}$$

Example usage

Bernoulli distribution $\text{Ber}(X|\theta)$ can be used to model coin tosses.
Binary classification

The goal of binary classification is to learn $h_\theta(x)$, which can be used to assign a label $y \in \{0, 1\}$ to the input x. Label y takes values in $\{0, 1\}$, so we can use Bernoulli distribution to specify its probability distribution. Specifically

$$\Pr(y = 1) = h_\theta(x)$$
$$\Pr(y = 0) = 1 - h_\theta(x)$$

Or more succinctly

$$\Pr(y) = h_\theta(x)^y (1 - h_\theta(x))^{1-y}$$
Likelihood for binary classification

Under the assumption that data is i.i.d.

\[\Pr(y|X, \theta) = \prod_{i=1}^{N} h_\theta(x^{(i)})^{y^{(i)}} \left(1 - h_\theta(x^{(i)})\right)^{1-y^{(i)}} \]
Sigmoid function

$
sigm(x) \text{ refers to a sigmoid function, also known as the logistic or logit function.}$

\[
sigm(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}
\]
Artificial Neuron

Perceptron with Sigmoid activation function

\[x^T \theta = \theta_0 + \sum_{i=1}^{M} x_i \theta_i \]

\[\frac{1}{1 + e^{-x^T \theta}} \]
Logistic regression

For logistic regression, we set $h_\theta(x) = \text{sigm}(x^T \theta)$. So

$$
\Pr(y|X, \theta) = \prod_{i=1}^{N} \left[\frac{1}{1 + e^{-x^{(i)T} \theta}} \right]^{y^{(i)}} \left[1 - \frac{1}{1 + e^{-x^{(i)T} \theta}} \right]^{1-y^{(i)}}
$$

where

$$
x^T \theta = \theta_0 + \sum_{i=1}^{M} \theta_i x_i
$$
MLE for logistic regression

Likelihood

\[L(\theta) = \Pr(y|X, \theta) \]

Negative log-likelihood

\[
l(\theta) = -\log L(\theta) \\
= -\sum_{i=1}^{N} y^{(i)} \log h_\theta(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)}))
\]

Goal

Our goal is to find parameters \(\theta \) that maximize the likelihood (or minimize the negative log-likelihood).

\[\theta^* = \arg \min_{\theta} l(\theta) \]

We prefer to work in the log domain for mathematical convenience. There are also numerical advantages of working in the log domain.
Derivative of a sigmoid

\[
\frac{d}{dx} \text{sigm}(x) = \frac{d}{dx} \frac{1}{1 + e^{-x}}
\]

\[
= \frac{(-1)e^{-x}}{(1 + e^{-x})^2}
\]

\[
= \left(\frac{e^{-x}}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right)
\]

\[
= \left(\frac{1 - 1 + e^{-x}}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right)
\]

\[
= \left(1 - \frac{1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right)
\]

\[
= (1 - \text{sigm}(x)) \text{sigm}(x)
\]

Gradient

\[
\frac{d}{d\theta} \text{sigm}(x^T \theta) = (1 - \text{sigm}(x)) \text{sigm}(x)x
\]
MLE for logistic regression

Gradient of $l(\theta)$ for ith example

$$\nabla l(\theta) = -x^{(i)}(y^{(i)} - h_\theta(x^{(i)}))$$

Stochastic gradient descent rule:

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla l(\theta)$$

$$= \theta^{(k)} + \eta x^{(i)}(y^{(i)} - h_\theta(x^{(i)}))$$
Logistic regression for binary classification

Given a point $\mathbf{x}^{(*)}$, classify using the following rule

$$y^{(*)} = \begin{cases} 1 & \text{if } \Pr(y|\mathbf{x}^{(*)}, \theta) \geq 0.5 \\ 0 & \text{otherwise} \end{cases}$$

The decision boundary is $\mathbf{x}^T \theta = 0$.
Recall that this is where the sigmoid function is 0.5.
Logistic regression for binary classification
Summary

- We looked at logistic regression, a binary classifier.
- Bernoulli distribution